21.4 二次函数的应用课时练习题
参考答案
一、精心选一选
题号
1
2
3
4
5
6
7
8
9
10
答案
A
A
B
C
D
C
C
B
B
B
1﹒某种正方形合金板材的成本y(元)与它的面积成正比,设边长为xcm.当x=3时,y=8,那么当成本为72元时,边长为( )21·世纪*教育网
A.6cm B.12cm C.24cm D.36cm
解答:设y与x之间的函数关系式为y=kx2,由题意,得
18=9k,
解得:k=2,
∴y=2x2,
当y=72时,72=2x2,
∴x=6.
故选:A.
2﹒将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( ) 21*cnjy*com
A.5元 B.10元 C.15元 D.20元
解答:设应降价x元,
则(20+x)(100﹣x﹣70)=﹣x2+10x+600=﹣(x﹣5)2+625,
∵﹣1<0
∴当x=5元时,二次函数有最大值.
∴为了获得最大利润,则应降价5元.
故选:A.
3﹒某烟花厂设计一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )www.21-cn-jy.com
A.3s B.4s C.5s D.6s
解答:∵h=﹣t2+20t+1,
∴h=﹣(t﹣4)2+41,
∴当t=4秒时,礼炮达到最高点爆炸.
故选:B.
4﹒河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y=-x2,当水面离桥拱的高度DO是4m时,这时水面宽度AB为( )21教育名师原创作品
A.-20m B.10m
C.20m D.-10m
解答:根据题意B的纵坐标为﹣4,
把y=﹣4代入y=﹣x2,
得x=±10,
∴A(﹣10,﹣4),B(10,﹣4),
∴AB=20m.
即水面宽度AB为20m.
故选:C.
5﹒某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:y1=-x2+10x,y2=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润是( )21*cnjy*com
A.30万元 B.40万元
C.45万元 D.46万元
解答:设在甲地销售x辆,则在乙地销售(15﹣x)辆,根据题意得出:
W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,
∴最大利润为:==46(万元),
故选:D.
6﹒如图,假设篱笆(虚线部分)的长度为16m,则所围成
矩形ABCD的最大面积是( )
A.60m2 B.63m2
C.64m2 D.66m2
解答:设BC=xm,则AB=(16﹣x)m,矩形ABCD面积为ym2,
根据题意得:y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,
当x=8m时,y最大值=64m2,
则所围成矩形ABCD的最大面积是64m2.
故选:C.
7﹒某民俗旅游村为接待游客住宿需求,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出.若每张床位每天收费提高2元,则相应的减少了10张床位租出;如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( )21cnjy.com
A.14元 B.15元 C.16元 D.18元
解答:设每张床位提高x个2元,每天收入为y元.
则有y=(10+2x)(100﹣10x)
=﹣20x2+100x+1000.
当x=﹣=2.5时,可使y有最大值.
又x为整数,则x=2时,y=1120;
x=3时,y=1120;
则为使租出的床位少且租金高,每张床收费=10+3×2=16(元).
故选:C.
8﹒某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛
物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线
的最高点M离墙1m,离地面m,则水流落地点B离墙的距离
OB是( )
A.2m B.3m C.4m D.5m
解答:设抛物线的解析式为y=a(x﹣1)2+,
把点A(0,10)代入a(x﹣1)2+,得a(0﹣1)2+ =10,
解得a=﹣,
因此抛物线解析式为y=﹣(x﹣1)2+,
当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);
即OB=3米.
故选:B.
9﹒羽毛球的运动路线可以看作是抛物线y=-x2+x+1的一部分,如图所示(单位:m),则下列说法不正确的是( )【版权所有:21教育】
A.出球点A离地面点O的距离是1m
B.该羽毛球横向飞出的最远距离是3m
C.此次羽毛球最高可达到m
D.当羽毛球横向飞出m时,可达到最高点
解答:A.当x=0时,y=1,
则出球点A离地面点O的距离是1m,故A正确;
B.当y=0时,﹣x2+x+1=0,
解得:x1=﹣1(舍去),x2=4≠3.故B错误;
C.∵y=﹣x2+ x+1,
∴y=﹣(x﹣)2+,
∴此次羽毛球最高可达到m,故C正确;
D.∵y=﹣(x﹣)2+,
∴当羽毛球横向飞出m时,可达到最高点.故D正确.
∴只有B是错误的.
故选:B.
10.图2是图中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=(x-80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为( )
A.16米 B.米 C.16米 D.米
图1 图2
解答:∵AC⊥x轴,OA=10米,
∴点C的横坐标为﹣10,
当x=﹣10时,y=(x-80)2+16=(-10-80)2+16=﹣,
∴C(﹣10,﹣),
∴桥面离水面的高度AC为m.
故选:B.
二、细心填一填
11. 22; 12. 19.6; 13. 25;
14. 20; 15. 75; 16. 2.
11.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为______元时,该服装店平均每天的销售利润最大.21世纪教育网版权所有
解答:设定价为x元,
根据题意得:y=(x﹣15)[8+2(25﹣x)]
=﹣2x2+88x﹣870
∴y=﹣2x2+88x﹣870,
=﹣2(x﹣22)2+98
∵a=﹣2<0,
∴抛物线开口向下,
∴当x=22时,y最大值=98.
故答案为:22.
12.一个足球被从地面上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4s落地,则足球距地面的最大高度是_____________m.2·1·c·n·j·y
解答:由题意得:t=4时,h=0,
因此16a+19.6×4=0,
解得:a=﹣4.9,
∴函数关系为h=﹣4.9t2+19.6t,
足球距地面的最大高度是: =19.6(m),
故答案为:19.6.
13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为________元.
解答:设最大利润为w元,
则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,
∵20≤x≤30,
∴当x=25时,二次函数有最大值25,
故答案是:25.
14.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行__________m才能停下来.
解答:依题意:该函数关系式化简为S=﹣5(t﹣2)2+20,
当t=2时,汽车停下来,滑行了20m.
故惯性汽车要滑行20米.
故答案为:20.
15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间有一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________m2.2-1-c-n-j-y
解答:设垂直于墙的材料长为x米,
则平行于墙的材料长为27+3﹣3x=30﹣3x,
则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,
故饲养室的最大面积为75平方米,
故答案为:75.
16.如图是一个横断面为抛物线形状的拱桥,当水面宽为4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面宽度为________米.【来源:21cnj*y.co*m】
解答:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,【出处:21教育名师】
抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),
通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),
到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,
当水面下降1米,通过抛物线在图上的观察可转化为:
当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,
可以通过把y=﹣1代入抛物线解析式得出:
﹣1=﹣0.5x2+2,
解得:x=±,
所以水面宽度增加到2米,
故答案为:2.
三、解答题
17.九年级数学兴趣小组经市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件)
100
110
120
130
…
月销量(件)
200
180
160
140
…
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:①销售该运动服每件的利润是_______________元;②月销量是________________件;(直接写出结果)www-2-1-cnjy-com
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
解答:(1)①销售该运动服每件的利润是(x﹣60)元;
②设月销量W与x的关系式为w=kx+b,
由题意得,,
解得:,
∴W=﹣2x+400;
(2)由题意得,y=(x﹣60)(﹣2x+400)
=﹣2x2+520x﹣24000
=﹣2(x﹣130)2+9800,
∴售价为130元时,当月的利润最大,最大利润是9800元.
18.某商场有 A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.
(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根据市场调查:按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.
①求每天B商品的销售利润y(元)与销售单价x(元)之间的函数关系?
②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?
解答:(1)根据题意得:,
解得:;
(2)①由题意得:y=(x﹣20)[100﹣5(x﹣30)]
∴y=﹣5x2+350x﹣5000,
②∵y=﹣5x2+350x﹣5000=﹣5(x﹣35)2+1125,
∴当x=35时,y最大=1125,
∴销售单价为35元时,B商品每天的销售利润最大,最大利润是1125元.
19.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.【来源:21·世纪·教育·网】
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)x为何值时,y有最大值?最大值是多少?
解答:(1)∵三块矩形区域的面积相等,
∴矩形AEFD面积是矩形BCFE面积的2倍,
∴AE=2BE,
设BE=a,则AE=2a,
∴8a+2x=80,
∴a=﹣x+10,2a=﹣x+20,
∴y=(﹣x+20)x+(﹣x+10)x=﹣x2+30x,
∵a=﹣x+10>0,
∴x<40,
则y=﹣x2+30x(0<x<40);
(2)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,
∴当x=20时,y有最大值,最大值为300平方米.
20.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数
关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系
x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?21教育网
解答:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),
∴,
解得:,
∴抛物线的解析式为:y=﹣t2+5t+,
∴当t=时,y最大=4.5;
(2)把x=28代入x=10t得t=2.8,
∴当t=2.8时,y=-×2.82+5×2.8+=2.25<2.44,
∴他能将球直接射入球门.
21.如图,正方形ABCD的边长为3a,两动点E,F分别从顶点B,C同时开始以相同速度沿边BC,CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B,E,C,G在一条直线上.21·cn·jy·com
(1)若BE=a,求DH的长;
(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.
解答:(1)连接FH,
∵△EGH≌△BCF,
∴HG=FC,∠G=∠BCF,
∴HG∥FC,
∴四边开FCGH是平行四边形,
∴FH∥CG,且FH=CG,
又∵EG=BC,
∴EG-EC=BC-EC,即CG=BE,
∴FH=BE,
∵FH∥CG,
∴∠DFH=∠DCG=90°,
由题意可知:CF=BE=a,
在Rt△DFH中,DF=3a-a=2a,FH=a,
∴DH==a;
(2)设BE=x,△DHE的面积为y,根据题意得:
y=S△CDE+S梯形CDHG-S△EGH=×3a(3a-x)+ (3a+x)x-×3a×x,
∴y=x2-ax+a2=(x-a)2+a2,
∴当x=a,即E为BC的中点时,y取得最小值,即△DHE的面积取得最小值,最小值是a2.
2015~2016学年度九年级上学期数学课时练习题
21.4 二次函数的应用
一、精心选一选
1﹒某种正方形合金板材的成本y(元)与它的面积成正比,设边长为xcm.当x=3时,y=8,那么当成本为72元时,边长为( )21·世纪*教育网
A.6cm B.12cm C.24cm D.36cm
2﹒将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )【出处:21教育名师】
A.5元 B.10元 C.15元 D.20元
3﹒某烟花厂设计一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )【版权所有:21教育】
A.3s B.4s C.5s D.6s
4﹒河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y=-x2,当水面离桥拱的高度DO是4m时,这时水面宽度AB为( )21世纪教育网版权所有
A.-20m B.10m
C.20m D.-10m
5﹒某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:y1=-x2+10x,y2=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润是( )【来源:21·世纪·教育·网】
A.30万元 B.40万元
C.45万元 D.46万元
6﹒如图,假设篱笆(虚线部分)的长度为16m,则所围成
矩形ABCD的最大面积是( )
A.60m2 B.63m2
C.64m2 D.66m2
7﹒某民俗旅游村为接待游客住宿需求,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出.若每张床位每天收费提高2元,则相应的减少了10张床位租出;如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( )21教育名师原创作品
A.14元 B.15元 C.16元 D.18元
8﹒某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛
物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线
的最高点M离墙1m,离地面m,则水流落地点B离墙的距离
OB是( )
A.2m B.3m C.4m D.5mwww-2-1-cnjy-com
9﹒羽毛球的运动路线可以看作是抛物线y=-x2+x+1的一部分,如图所示(单位:m),则下列说法不正确的是( )2-1-c-n-j-y
A.出球点A离地面点O的距离是1m
B.该羽毛球横向飞出的最远距离是3m
C.此次羽毛球最高可达到m
D.当羽毛球横向飞出m时,可达到最高点
10.图2是图1拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=(x-80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为( )21·cn·jy·com
A.16米 B.米 C.16米 D.米
图1 图2
二、细心填一填
11.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为______元时,该服装店平均每天的销售利润最大.www.21-cn-jy.com
12.一个足球被从地面上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4s落地,则足球距地面的最大高度是_____________m.21*cnjy*com
13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为________元.
14.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行__________m才能停下来.
15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间有一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________m2.
16.如图是一个横断面为抛物线形状的拱桥,当水面宽为4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面宽度为________米.
三、解答题
17.九年级数学兴趣小组经市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件)
100
110
120
130
…
月销量(件)
200
180
160
140
…
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:①销售该运动服每件的利润是_______________元;②月销量是________________件;(直接写出结果)21教育网
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
18.某商场有 A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.2·1·c·n·j·y
(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根据市场调查:按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.
①求每天B商品的销售利润y(元)与销售单价x(元)之间的函数关系?
②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?
19.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.21cnjy.com
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)x为何值时,y有最大值?最大值是多少?
20.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数
关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系
x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门? 21*cnjy*com
21.如图,正方形ABCD的边长为3a,两动点E,F分别从顶点B,C同时开始以相同速度沿边BC,CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B,E,C,G在一条直线上.【来源:21cnj*y.co*m】
(1)若BE=a,求DH的长;
(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.