中小学教育资源及组卷应用平台
第3单元解决问题的策略重难点检测卷-数学六年级下册苏教版
一、选择题
1.钢笔每支12元,圆珠笔每支7元,王强买了钢笔和圆珠笔共6支,用了52元。王强买了( )支钢笔。
A.2 B.3 C.4 D.5
2.学校体育活动室有象棋、跳棋共20副,恰好可以供64人同时进行活动,象棋每2人下一副,跳棋每4人下一副。象棋有( )副。
A.9 B.12 C.15 D.8
3.一盒棋子(只有黑白两色),其中白、黑棋子数的比是3∶2,下列说法中错误的是( )。
A.白子数是黑子数的1.5倍
B.黑子数和白子数的比是2∶3
C.白子数比黑子数多
D.黑子数占一盒棋子数的40%
4.一个直角三角形的三个内角的比是2∶x∶3,则x的值是( )。
A.1 B.5 C.1或5 D.3 或5
5.甲、乙两种商品的单价之和为100元,因季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价之和比原单价之和提高了2%,则甲、乙两种商品的单价分别为( )。
A.甲商品30元,乙商品70元 B.甲商品25元,乙商品75元
C.甲商品40元,乙商品60元 D.甲商品20元,乙商品80元
6.把一个长方形放大,放大后的长方形与原图形对应边长的比为,那么放大后的长方形与原图形面积的比是( )。
A. B. C. D.
二、填空题
7.将鸡和兔共6只关在同一个笼子里,一共20条腿,其中鸡有( )只,兔有( )只。
8.某小学有三块面积相等的花圃和三块面积相等的苗圃,一共是480平方米,每块花圃比每块苗圃大10平方米,每块花圃的面积是( )平方米,每块苗圃的面积是( )平方米。
9.习近平总书记提出“绿水青山就是金山银山”。为保护生态环境,某地开展植树造林活动,3月12日当日植树棵数为总棵数的20%,如果再植124棵,已植的棵数与剩下的棵数比是1∶3,计划要植树( )棵。
10.刘老师和张老师带48名同学去公园划船,一共坐满了10条船,每条大船可坐6人,每条小船可坐4人,大船和小船各有几条?先假设两种船的只数,计算总人数,再进行调整。
大船的只数 小船的只数 乘坐的总人数 和( )人比较
答:大船有( )条,小船有( )条。
11.将图①中边长为2厘米的正方形复制并向右平移1厘米,得到图②。以后每次得到的正方形这样复制平移,就形成了以下一组图形。
……
第2个图形的周长是( )厘米;第( )个图形的周长是18厘米;第n个图形的周长是( )厘米。
12.已知大圆柱和小圆柱的底面周长的比是2∶1,高的比是3∶2,大圆柱的体积比小圆柱的体积大30立方厘米,大圆柱的体积是( )立方厘米。
三、判断题
13.盐和水的质量比是,盐占盐水的。( )
14.海洋馆里,企鹅与海豹的数量之比是2∶3,那么企鹅比海豹的数量少。( )
15.某班男、女生人数比为,男生占全班人数的。( )
16.两根同样长的钢筋,其中一根锯成3段用了12分钟,另一根要锯成6段,需要30分钟。( )
17.解决“鸡兔同笼”的问题,可以用列表法,也可以用假设法。( )
四、解答题
18.光明小学“绿色卫士”小分队16人参加植树活动。男生每人植5棵树,女生每人植3棵树,一共植了56棵树。光明小学“绿色卫士”小分队中男生有多少人?
19.小红买6角和8角的邮票一共13张,用去8元4角钱。这两种邮票各买了多少张?
20.为庆祝中国共产党建党100周年,让学生进一步了解中国共产党的历史,某学校组织了一次党史知识竞赛。共有10道选择题,每道题答对得5分,答错或不答扣1分。
(1)小明答对了8道题,答错了2道题,他的总得分是( )分。
(2)李佳一共得了32分,她答对了几道题?答错或不答的有几道?(写清思路,分析原因)
21.一辆汽车从A地到B地,到达B地后又立即返回到A地,去时比返回时少用1.2小时。已知这辆汽车去时每小时行100千米,返回时每小时行80千米。两地相距多少千米?
22.甲、乙各有课外读物若干本,甲又买来18本,这时甲的本数是乙的2倍。如果把这18本给乙,则乙的本数为甲的。甲、乙原来各有课外读物多少本?
23.全国义务教育劳动课程标准出台以后,让学生学会做家务劳动成为新的热门话题。某校在端午节来临之际,组织学生进行包粽子比赛,四、五、六年级代表队完成粽子的个数比为4∶5∶6,已知四年级代表队包了60个粽子,请你帮忙计算这三个代表队一共包了多少个粽子?
参考答案:
1.A
【分析】假设6支全买的圆珠笔,依此计算出6支圆珠笔的总钱数以及实际用的总钱数与6支圆珠笔的总钱数的差,l支圆珠笔与1支钢笔的价钱差,然后用实际用的总钱数与6支圆珠笔的总钱数的差除以1支圆珠笔与l支钢笔的价钱差,得到的商就是买钢笔的支数,依此计算并选择。
【详解】6×7=42(元)
52-42=10(元)
12-7=5(元)
10÷5=2(支)
即钢笔买了2支。
故答案为:A
2.D
【分析】假设全部是跳棋,则象棋的副数=(下每副跳棋的人数×跳棋的副数-同时参加活动的总人数)÷(下每副跳棋的人数-下每副象棋的人数),据此计算即可。
【详解】假设全部是跳棋,则象棋的副数有:
(4×20-64)÷(4-2)
=(80-64)÷2
=16÷2
=8(副)
故答案为:D
【点睛】此题考查了鸡兔同笼问题,关键是学会用假设法求解。
3.C
【分析】白棋子数与黑棋子数的比是3∶2,可把白棋子数看作3份,黑棋子数看作2份,然后对各选项进行判断。求白子数是黑子数的几倍,则用白子数除以黑子数即可;要求黑子数与白子数的比是多少,用黑子的份数比白子的份数;求白子数比黑子数多几分之几,则用白子的份数减去黑子的份数再除以黑子份数即可;求黑子数占一盒棋子数的百分之几,就是用黑子的份数除以黑白棋子的总份数即可。
【详解】A. 3÷2=1.5
白子数是黑子数的1.5倍,原题说法正确;
B.黑子数和白子数的比是2∶3,原题说法正确;
C.(3-2)÷2
=1÷2
=
因此白子数比黑子数多,原题说法错误;
D.2÷(3+2)
=2÷5
=40%
因此黑子数占一盒棋子数的40%,原题说法正确。
故答案为:C
【点睛】解答此题的关键是把黑、白棋子的数量分别看作2和3进行解答。
4.C
【分析】根据三角形的性质,直角三角形中最大的角为90度。分类讨论:
(1)设这个比中第三个数是最大的角,则可知x=3-2;
(2)设这个比中第二个数是最大的角,则x=2+3,依此解答。
【详解】(1)设这个比中第三个数是最大的角,则可知x=3-2=1;
(2)设这个比中第二个数是最大的角,则x=2+3=5。
所以x的值是1或5。
故答案为:C
【点睛】本题考查的是三角形内角和与比的应用。
5.D
【分析】设甲商品的单价为x元,则乙商品的单价为(100-x)元,甲商品降价10%则甲商品的现价为(1-10%)x元,乙商品提价5%,则乙商品的现价为(100-x)×(1+5%);此时的单价之和是100×(1+2%),根据现在的单价和等于100×(1+2%)列出方程求解即可。
【详解】解:设甲商品的单价为x元,则乙商品的单价为(100-x)元
(1-10%)x+(100-x)×(1+5%)=100×(1+2%)
0.9x+1.05×(100-x)=102
0.9x+105-1.05x=102
0.15x=105-102
x=3÷0.15
x=20
100-20=80(元)
即甲商品20元,乙商品80元。
故答案为:D
【点睛】本题主要考查列方程解含有两个未知量的问题,理清数量关系列出方程是解题的关键。
6.B
【分析】把一个长方形按2∶1放大,放大后图形的周长与原图的周长比不变,面积比即边长平方的比。由此解答即可。
【详解】把一个长方形按2∶1放大,放大后图形的面积与原图形的面积比是:
22∶12=4∶1
【点睛】明确把一个长方形按一定的比扩大或缩小,放大或缩小后图形的周长与原图的周长比不变,面积比即边长平方的比。
7. 2 4
【分析】设兔有x只,则鸡有(6-x)只,根据鸡的只数×每只鸡的腿数+兔的只数×每只兔的腿数=总腿数,列出方程求出x的值是兔的只数,总只数-兔的只数=鸡的只数。
【详解】解:设兔有x只。
(6-x)×2+4x=20
12-2x+4x=20
12+2x=20
12+2x-12=20-12
2x=8
2x÷2=8÷2
x=4
6-4=2(只)
其中鸡有2只,兔有4只。
8. 85 75
【分析】设每块苗圃的面积是x平方米,则每块花圃的面积是(x+10)平方米,根据每块花圃的面积×块数+每块苗圃的面积×块数=总面积,列出方程求出x的值是每块苗圃的面积,每块苗圃的面积+10=每块花圃的面积。
【详解】解:设每块苗圃的面积是x平方米。
(x+10)×3+3x=480
3x+30+3x=480
6x+30=480
6x+30-30=480-30
6x=450
6x÷6=450÷6
x=75
75+10=85(平方米)
每块花圃的面积是85平方米,每块苗圃的面积是75平方米。
9.2480
【分析】根据题意可知,要把计划植树的棵数看成单位“1”,3月12日当日植树棵数为总棵数的20%,如果再植124棵,已植的棵数为总棵数的。124棵所对应的百分率是,所以计划植树的棵数是(棵)。
【详解】124÷(-20%)
=124÷0.05
=2480(棵)
计划要植树2480棵。
10.见详解
【分析】两位老师和48名学生一共有50人,先假设两种船各有5条,然后计算出总人数,和50比较,如果乘坐人数大于50人,说明大船多了,那么减少大船的条数,增加小船的条数,直到乘坐人数是50人即可。
【详解】4×6=24(人)
6×4=24(人)
24+24=48(人)
5×6=30(人)
5×4=20(人)
30+20=50(人)
大船的只数 小船的只数 乘坐的总人数 和(50)人比较
4 6 48 小于
5 5 50 相等
答:大船有5条,小船有5条。
【点睛】考查假设方法有关搭配的问题,要根据实际情况具体分析。
11. 10 6 2(n+3)
【分析】根据题意,图中每个小长方形的宽是1厘米。第1个图形正方形的周长=2×4=8(厘米),观察图形可以发现,第2个图形的周长比正方形的周长多了2厘米,是2×4+2=2×5=10(厘米);第3个图形的周长比正方形的周长多了4厘米,是2×4+4=2×6=12(厘米)。以此类推,第n个图形的周长=2(n+3)。
图形的周长是18厘米,则2(n+3)=18,根据等式的性质解出方程即可得出图形的序号。
【详解】2×4+2
=8+2
=10(厘米)
则第2个图形的周长是10厘米;
通过分析,第n个图形的周长是2(n+3)厘米;
2(n+3)=18
解:n+3=18÷2
n+3=9
n=6
则第6个图形的周长是18厘米。
【点睛】本题考查数形结合问题。通过观察、计算和分析,发现图形的周长与序号之间的关系是解题的关键。
12.36
【分析】因为大圆柱和小圆柱的底面周长的比是2∶1,所以底面积之比是4∶1,高的比是3∶2,用乘法求出体积的比;大圆柱的体积比小圆柱的体积大30立方厘米,用30立方厘米除以体积比的差,求出一份是多少立方厘米,再求大圆柱的体积。
【详解】因为大圆柱和小圆柱的底面周长的比是2∶1,
所以大圆柱和小圆柱的底面面积的比是(2×2)∶(1×1),
大圆柱和小圆柱的底面面积的比是4∶1;
因为大圆柱和小圆柱高的比是3∶2,
所以大圆柱和小圆柱体积比(4×3)∶(1×2)
大圆柱和小圆柱体积比是12∶2,
大圆柱体积∶小圆柱体积=6∶1
6-1=5
30÷5=6(立方厘米)
6×6=36(立方厘米)
所以大圆柱的体积是36立方厘米。
【点睛】掌握圆柱的体积公式是解题关键。
13.×
【分析】盐水是由盐和水组成,题中盐为1份,水是20份,则盐水为21份,所以盐占盐水的,据此进行判断。
【详解】
5%=
故答案为:×
【点睛】理解盐水是由盐和水组成的是解答本题的关键。
14.√
【分析】企鹅与海豹的数量之比是2∶3,说明企鹅的数量为2份,海豹的数量为3份,计算企鹅比海豹的数量少多少,再除以海豹的份数即可。
【详解】企鹅与海豹的数量之比是2∶3,说明企鹅的数量为2份,海豹的数量为3份,则企鹅比海豹的数量少:
故答案为:√
【点睛】本题主要考查了比的应用,关键是将企鹅的数量看成2份,海豹的数量看成3份。
15.√
【分析】男生看作5份,女生就是4份,全部人数就是9份。据此求解。
【详解】男生占全班人数的
故答案为:√。
【点睛】本题主要考查比的应用。
16.√
【分析】锯成3段需要锯3-1=2次,用时12分钟,由此求出锯一次需要的时间;锯成6段需要锯6-1=5次,所以需要的时间是6×5=30分钟;据此解答。
【详解】锯一次需要时间:12÷(3-1)
=12÷2
=6(分钟)
锯5次需要时间:6×5=30(分钟),要锯成6段需要锯5次,需要30分钟。
故答案为:√
【点睛】对于这类题目,判断时可以算一算具体时间来对照,在算的时候一定要考虑到实际情况,不能单纯的套公式计算。
17.√
【详解】解决“鸡兔同笼”的问题,有很多方法,可以用列表法,也可以用假设法。还可以通过方程来解答。原题说法正确。
故答案为:√
18.4人
【分析】假设全是男生植树,那么一共植了(16×5)棵树,比实际多种了(16×5-56)棵,已知一个男生比一个女生多种(5-3)棵树,根据除法的意义,用(16×5-56)÷(5-3)即可求出女生植的棵数,进而用总棵数减去女生植的棵数,即可求出男生植的棵数。
【详解】假设全是男生植树,则:
女生人数:(16×5-56)÷(5-3)
=(80-56)÷(5-3)
=24÷2
=12(人)
男生人数:16-12=4(人)
答:光明小学“绿色卫士”小分队中男生有4人。
19.6角的10张;8角的3张
【分析】根据1元=10角,统一单位,设6角的邮票有x张,则8角的邮票有(13-x)张,根据6角的邮票钱数×张数+8角的邮票钱数×张数=总钱数,列出方程求出x的值是6角的邮票张数,总张数-6角的邮票张数=8角的邮票张数。
【详解】8元4角=84角
解:设6角的邮票有x张。
6x+8×(13-x)=84
6x+104-8x=84
104-2x=84
104-2x+2x =84+2x
84+2x-84=104-84
2x=20
2x÷2=20÷2
x=10
13-10=3(张)
答:6角的邮票买了10张,8角的邮票买了3张。
20.(1)38;(2)7道;3道
【分析】(1)根据题意可知,用答对的数量×5-答错的数量×1即可求出小明的总得分。
(2)假设全答对,则应有(10×5)分,实际却有32分。这个差值是因为实际上答错一道或不答比答对一道少(5+1)分,因此用除法求出假设比实际多的数量里面有多少个(5+1),就是答错或不答的题数。再用减法即可求出答对的数量。
【详解】(1)8×5-2×1
=40-2
=38(分)
他的总得分是38分。
(2)分析思路:假设全部答对,应得5×10=50(分)
答错或不答一题扣1分,即不得分再扣1分,就是在假设的基础上每错一题扣:
5+1=6(分)
答错或不答题目:
(50-32)÷6
=18÷6
=3(道)
答对题目:10-3=7(道)
答:答对了7道,答错或不答有3道。
21.480千米
【分析】设返回的时间是x小时,根据等量关系:去时的路程=返回时的路程,列方程求出返回的时间,最后根据路程=速度×时间,计算出两地相距多少千米。
【详解】解:设返回的时间是x小时。
(x-1.2)×100=80x
100x-120=80x
100x-80x=120
20x=120
20x÷20=120÷20
x=6
80×6=480(千米)
答:两地相距480千米。
【点睛】本题解题的关键是根据等量关系:去时的路程=返回时的路程,列方程解答。
22.72本;45本
【分析】将买来18本后两人的总本数看成单位“1”,甲的本数是乙的2倍时,甲占总本数的;把这18本给乙,乙的本数为甲的,则甲是总本数的;所以18本对应总本数的-,根据分数除法的应用可知总本数为18÷(-)。最后用总本数×-18求出甲的本数,用总本数×(1-)-18求出乙的本数;据此解答。
【详解】18÷(-)
=18÷(-)
=18÷
=18×
=135(本)
135×-18
=135×-18
=90-18
=72(本)
135×(1-)-18
=135×(1-)-18
=135×-18
=63-18
=45(本)
答:甲原来有课外读物72本,乙原来课外读物45本。
【点睛】找出与已知本数对应的分率是解题的关键。
23.225个
【分析】四、五、六年级代表队完成粽子的个数比为4∶5∶6,把四年级代表队完成粽子的个数看作4份,五年级代表队完成粽子的个数看作5份,六年级代表队完成粽子的个数看作6份,三个代表队一共(4+5+6)份,用四年级代表队包的个数除以4,得出1份的个数,再求这三个代表队一共包了多少个粽子。
【详解】60÷4×(4+5+6)
=15×15
=225(个)
答:这三个代表队一共包了225个粽子。
【点睛】本题主要考查了比的应用,关键是得出1份的个数。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)