【推荐】人教版九年级数学上册《21.3 实际问题与一元二次方程》课件(8份)

文档属性

名称 【推荐】人教版九年级数学上册《21.3 实际问题与一元二次方程》课件(8份)
格式 zip
文件大小 4.9MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2015-09-15 19:30:56

文档简介

课件16张PPT。21.3 实际问题与一元二次方程(1)知识回顾一、复习 列方程解应用题的一般步骤?
第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;
第二步:找出能够表示应用题全部含义的相等关系;
第三步:根据这些相等关系列出需要的代数式(简称关系式)从而列出方程;
第四步:解这个方程,求出未知数的值;
第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(及单位名称)。探究1   有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?分析   有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?探究1   有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?探究1   有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?如果按这样的传播速度,三轮传染
后有多少人患了流感? 同步练习 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台. 探究2 两年前生产 1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,
现在生产 1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大? 分析:甲种药品成本的年平均下降额为
(5000-3000)÷2=1000(元)
乙种药品成本的年平均下降额为
(6000-3600)÷2=1200(元)
乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数)
解:设甲种药品成本的年平均下降率为x,则一年后
甲种药品成本为5000(1-x)元,两年后甲种药品成本
为 5000(1-x)2 元,依题意得解方程,得答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?比较:两种药品成本的年平均下降率22.5%(相同)经过计算,你能得出什么结论?成本下降额
较大的药品,它的成本下降率一定也较大
吗 ?应怎样全面地比较对象的变化状况? 经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.1增长率的问题在实际生活普遍存在,有一定的模式若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为其中增长取+,降低取-1变式1:某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%) 解:设原价为1个单位,
每次降价的百分率为 x.
根据题意,得 解这个方程,得 答:每次降价的百分率为29.3%. 1变式2:某药品两次升价,零售价升为原来的 1.2倍,已知两次升价的百分率一样,求每次升价的百分率(精确到0.1%)解,设原价为 元,每次升价的百分率为 ,
根据题意,得 解这个方程,得 由于升价的百分率不可能是负数,
所以 不合题意,舍去答:每次升价的百分率为9.5%. 1.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程( )
A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=500
2.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程
为 .B 在今天这节课上,你有什么样的收获呢?有什么感想?1、平均增长(降低)率公式2、注意:
(1)1与x的位置不要调换
(2)解这类问题列出的方程一般
用 直接开平方法作 业这节课就到这里,下课!课件12张PPT。21.3 实际问题与一元二次方程第1课时 用一元二次方程解决传播问题10a+b未知数实际意义10b+a1.列一元二次方程可以解决许多实际问题,解题的一般步骤是:①审题,弄清已知量、____________;②设未知数,并用含有___________的代数式表示其他数量关系;③根据题目中的___________,列一元二次方程;④解方程,求出__________的值;⑤检验解是否符合问题的____________;⑥写出答案.
2.一个两位数,个位数字为a,十位数字为b,则这个两位数为__________,若交换两个数位上的数字,则得到的新两位数为___________.等量关系未知数未知量知识点1:倍数传播问题
1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干、支干和小分支的总数是91,设每个支干长出小分支的个数为x,则依题意可列方程为___________________.
2.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.
(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?
(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?
解:(1)设每轮分裂中平均每个有益菌可分裂出x个有益菌,根据题意得60(1+x)2=24000,解得x1=19,x2=-21(不合题意,舍去),则每轮分裂中平均每个有益菌可分裂出19个有益菌 1+x+x2=91(2)60×(1+19)3=60×203=480000(个),则经过三轮培植后共有480000个有益菌 B 6和8知识点3:数字问题
6.两个连续偶数的和为14,积为48,则这两个连续偶数是_________.7.已知一个两位数比它的个位上的数的平方小6,个位上的数与十位上的数的和是13,求这个两位数.
解:设这个两位数的个位数字为x,则十位数字为(13-x),由题意得10(13-x)+x+6=x2,整理得x2+9x-136=0,
解得x1=8,x2=-17(不合题意,舍去),∴13-x=5,
则这个两位数是58B C 8.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件,如果全组有x名同学,则根据题意列出的方程是( )
A.x(x+1)=132 B.x(x-1)=132
C.x(x+1)=132×2 D.x(x-1)=132×2
9.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( )
A.4个   B.5个   C.6个   D.7个D 10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )
A.32   B.126    C.135   D.14411.一个直角三角形的三边长恰好是三个连续整数,若设较长的直角边长为x,则根据题意列出的方程为____________________.
12.某剧场共有1050个座位,已知每行的座位数都相同,且每行的座位数比总行数少17,求每行的座位数.
解:设每行的座位数为x个,由题意得x(x+17)=1050,解得x1=25,x2=-42(不合题 意,舍去),则每行的座位数是25个
13.有人利用手机发微信,获得信息的人也按他的发送人数发送该条微信,经过两轮微信的发送,共有56人手机上获得同一条微信,则每轮一个人要向几个人发送微信?
解:设每轮一个人要向x个人发微信,由题意得x(x+1)=56,解得x1=7,x2=-8(不合题意,舍去),则每轮一个人要向7个人发送微信 x2+(x-1)2=(x+1)214.有一人患了流感,经过两轮传染后共有64人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
解:(1)设每轮传染中平均一个人传染了x个人,则1+x+x(x+1)=64,解得x1=7,x2=-9(不合题意,舍去), 即每轮传染中平均一个人传染7个人 
(2)64×7=448(人) 15.读诗词解题:(通过列方程式,算出周瑜去世时的年龄)
大江东去浪淘尽,千古风流数人物;
而立之年督东吴,早逝英年两位数;
十位恰小个位三,个位平方与寿符;
哪位学子算得快,多少年华属周瑜?解:设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3,由题意得10(x-3)+x=x2,解得x1=5,x2=6.
当x=5时,周瑜的年龄为25岁,非而立之年,不合题意,舍去;当x=6时,周瑜的年龄为36岁,符合题意,
则周瑜去世时的年龄为36岁  (n-3) 课件11张PPT。21.3 实际问题与一元二次方程第1课时 用一元二次方程解决传播问题解一元一次方程应用题的一般步骤?第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;第二步:找出能够表示应用题全部含义的相等关系;温故第三步:根据这些相等关系列出需要的代数式(简称关系式)从而列出方程;第四步:解这个方程,求出未知数的值;第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(及单位名称)。 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 分析 : 11+x+x(1+x)第一轮传染后1+x第二轮传染后解:设每轮传染中平均一个人传染了x个人.开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有_____人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,
用代数式表示,第二轮后共有____________人患了流感.(x+1)1+x+x(1+x)1+x+x(1+x)=121解方程,得答:平均一个人传染了___10_____个人.(不合题意,舍去)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?如果按照这样的传染速度,三轮传染后有多少人患流感?121+121×10=1331人你能快速写出吗?
1.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排15场比赛,应邀请多少个球队参加比赛?答:应邀请6支球队参赛2.要组织一场篮球联赛, 每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛?答:应邀请10支球队参赛3.参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?答:有5人参加聚会4.某种电脑病毒传播非常快,如果有一台电脑被感染,经过两轮感染后就会有81台电脑被感染。请解释:每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,被感染的电脑会不会超过700台?
课件17张PPT。21.3 实际问题与一元二次方程(2)知识回顾列方程解应用题的一般步骤?第一步:设未知数(单位名称);第二步:列出方程;第三步:解这个方程,求出未知数的值;第四步:查(1)值是否符合实际意义,
(2)值是否使所列方程左右相等;第五步:答题完整(单位名称)。问题探究1 要设计一本书的封面,封面长27cm ,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
问题
(1)本题中有哪些数量关系?
(2)如何理解“正中央是一个与整个封面
长宽比例相同的矩形”?
(3)如何利用已知的数量关系选取未知
数并列出方程?
(4)解方程并得出结论,对比几种方法
各有什么特点? 解法探究 分析:这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7解法一:设正中央的矩形两边分别为9xcm,7xcm
依题意得解得 故上下边衬的宽度为:
左右边衬的宽度为:分析:这本书的长宽之比是9:7,正中央的矩形两边之比也为9:7,由此判断上下边衬与左右边衬的宽度之比也为9:7
解法二:设上下边衬的宽为9xcm,左右边衬宽为7xcm
依题意得解方程得(以下同学们自己完成)方程的哪个根合乎实际意义?
为什么?解法探究 问题探究2 如图,某中学为方便师生活动,准备
在长30m,宽20m的矩形草坪上修筑两横
两纵四条小路,横纵路的宽度之比为3∶2 ,
若使余下的草坪面积是原来草坪面积的
四分之三,则路宽应为多少?
问题
(1)本题中有哪些数量关系?
(2)由这些数量关系还能得到什么新
的结论?你想如何利用这些数量关系?为
什么?如何列方程?
(3)对比下列两个图形,它们有什么
联系与区别? (4)有什么方法使本题易于解决? 利用图形的变换--平移某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.练习解:(1)如图,设道路的宽为x米,则化简得,其中的 x=25超出了原矩形的宽,应舍去.∴图(1)中道路的宽为1米.1则横向的路面面积为 ,分析:此题的相等关系是矩形面积减去道路面积等于540米2。解法一、 如图,设道路的宽为x米,32x 米2纵向的路面面积为 。20x 米2注意:这两个面积的重叠部分是 x2 米2?1其中的 x=50超出了原矩形的长和宽,应舍去.
取x=2时,道路总面积为:答:所求道路的宽为2米。1解法二:
我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)1横向路面 ,如图,设路宽为x米,32x米2纵向路面面积为 。20x米2草坪矩形的长(横向) ,草坪矩形的宽(纵向) 。相等关系是:草坪长×草坪宽=540米2(20-x)米(32-x)米再往下的计算、格式书写与解法1相同。1 在今天这节课上,你有什么样的收获呢?有什么感想?这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求. 列一元二次方程解应用题的步骤与
列一元一次方程解应用题的步骤类似,
即审、设、列、解、检、答.1作 业这节课就到这里,下课!课件12张PPT。21.3 实际问题与一元二次方程第2课时 用一元二次方程解决增降率问题a(1±x)(1±x)a(1±x)21.若设每次的平均增长(或降低)率为x,增长(或降低)前的数量为a,则第一次增长(或降低)后的数量为___________,第二次增长(或降低)后的数量为_____________,即______________.
2.某商品进价为a元,售价为b元,则利润为__________元,若一天的销售量为c,则总利润为__________元.(b-a)(b-a)ca(1±x)知识点1:平均变化率问题
1.(2014·昆明)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1-x)2=100    B.100(1-x)2=144
C.144(1+x)2=100 D.100(1+x)2=144
2.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是( )
A.10%   B.15%   C.20%   D.25%3.
3.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为______.DA20%10%4.(2014·沈阳)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.
解:设这个增长率为x,根据题意得20(1+x)2-20(1+x)=4.8,解得x1=0.2=20%,x2=-1.2(不合题意,舍去),
则所求增长率为20%
知识点2:市场经济问题
5.某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元,若该商品两次调价的降价率相同,则这个降价率为_______;经调查,该商品每降价0.2元,即可多销售10件,若该商品原来每月销售500件,那么两次调价后,每月可销售商品_________件.8806.(2014·巴中)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若准备获利2000元,则应进货多少个?定价为多少元?
解:设每个商品的定价是x元,
由题意得(x-40)[180-10(x-52)]=2000,
整理得x2-110x+3000=0,解得x1=50,x2=60.
当x=50时,进货180-10(x-52)=200,不舍题意,舍去;
当x=60时,进货180-10(x-52)=100,符合题意,
则该商品应进货100个,定价为60元 7.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
解:设购买了x件这种服装,’
根据题意得[80-2(x-10)]x=1200,解得x1=20,x2=30.
当x=30时,80-2(30-10)=40<50,不符合题意,舍去,
∴x=20,则她购买了20件这种服装 A C 8.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )
A.50(1+x2)=196
B.50+50(1+x2)=196
C.50+50(1+x)+50(1+x)2=196
D.50+50(1+x)+50(1+2x)=196
9.(2014·泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应植多少株?设每盆多植x株,则可以列出的方程是( )
A.(x+3)(4-0.5x)=15 B.(x+3)(4+0.5x)=15
C.(x+4)(3-0.5x)=15 D.(x+1)(4-0.5x)=152.6(1+x)210.(2014·南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为____________万元;
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.
解:根据题意得4+2.6(1+x)2=7.146,
解得x1=0.1,x2=-2.1(不合题意,舍去),
∴可变成本平均每年增长的百分率是10% 11.某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表(不需化简):(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
解:依据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9000,整理得x2-20x+100=0,解得x1=x2=10,当x=10时,80-x=70>50,则第二个月的单价应是70元 12.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.
(1)若该公司当月售出3部汽车,则每部汽车的进价为________万元;
(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)26.8解:设需要售出x部汽车,由题意可知,每部汽车的销售利润为28-[27-0.1(x-1)]=(0.1x+0.9)(万元).
当0<x≤10,根据题意,得x(0.1x+0.9)+0.5x=12,
整理得x2+14x-120=0,解得x1=-20(不合题意,舍去),x2=6;当x>10时,根据题意,得x(0.1x+0.9)+x=12,整理得x2+19x-120=0,解得x1=-24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去,则需要售出6部汽车课件10张PPT。21.3 实际问题与一元二次方程第2课时 用一元二次方程解决增降率的问题两年前生产 1吨甲种药品的成本是5000元,生产1乙种药品的成本是6000元,随着生产技术的进步,现在生产 1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大? 分析:甲种药品成本的年平均下降额为
(5000-3000)÷2=1000(元)
乙种药品成本的年平均下降额为
(6000-3600)÷2=1200(元)
乙种药品成本的年平均下降额较大. 但是,年平均下降额(元)不等同于 年平均下降率(百分数)
解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为 5000(1-x)2 元,依题意得解方程,得答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?比较:两种药品成本的年平均下降率22.5%(相同)经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗 ?应怎样全面地比较对象的变化状况? 经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.类似地 这种增长率的问题在实际生活普遍存在,有一定的模式若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们
的数量关系可表示为其中增长取+,降低取-归纳练习:1.某厂今年一月的总产量为500吨,三月的总产量为
720吨,平均每月增长率是x,列方程( )
A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=500
2.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程
为 .B综合练习:惠州市开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次,设每年接受科技培训的人次的平均增长率都为x,根据题意列出的方程是_ _ _ _ _ _ _ _分析:本题中的相等关系为第一年培训人数+第二年培训人数+第三年培训人数=95万。答:每年接受科技培训的人次的平均增长率为50%课件11张PPT。21.3 实际问题与一元二次方程第3课时 用一元二次方程解决几何图形问题面积(体积)1.面积(体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与________的内在联系,根据___________公式列出一元二次方程.
2.一个正方形的边长增加了3 cm,面积相应增加了39 cm2,则原来这个正方形的边长为_______cm.已知量5知识点1:一般图形的面积问题
1.一个面积为35 m2的矩形苗圃,它的长比宽多2 m,则这个苗圃的长为( )
A.5 m   B.6 m   C.7 m   D.8 m
2.(2014·襄阳)用一条长40 cm的绳子围成一个面积为64 cm2的长方形.设长方形的长为x cm,则可列方程为( )
A.x(20+x)=64 B.x(20-x)=64
C.x(40+x)=64 D.x(40-x)=64
3.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,这两条直角边长分别为______________.C2cm,7cmB4.(2014·湘潭)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.
解:设AB= x m,则BC=(50-2x) m,根据题意得x(50-2x)=300,解得x1=10,x2=15,当x=10,BC=50-2×10=30>25,故x1=10不合题意,舍去,∴x=15,则可以围成AB为15 m,BC为20 m的矩形 知识点2:边框与通道问题
5.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上花草.若种植花草的面积为540 m2,求道路的宽.如果设道路的宽为x m,根据题意,所列方程正确的是( )
A.(20-x)(32-x)=540
B.(20-x)(32-x)=100
C.(20+x)(32-x)=540
D.(20-x)(32+x)=540A6.(2014·兰州)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,若设道路宽为x米,则根据题意可列出方程________________________.7.如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,若相框内部的面积为280 cm2,求相框边的宽度.
解:由题意得(26-2x)(20-2x)=280,整理得x2-23x+60=0,解得x1=3,x2=20(不合题意,舍去),则相框边的宽度为3 cm第6题图 第7题图 (22-x)(17-x)=3001 A B (3,-1)或(1,-3)11.如图,已知点A是一次函数y=x-4图象上的一点,且矩形ABOC的面积等于3,则点A的坐标为___________________.
12.如图是一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)种植的是不同花草.已知种植花草部分的面积为3600平方米,那么花园各角处的正方形观光休息亭的边长为多少米?
解:设正方形观光休息亭的边长为x米,依题意得(100-2x)(50-2x)=3600,整理得x2-75x+350=0,解得x1=5,x2=70,∵x2=70>50,不合题意,舍去,∴x=5,即矩形花园各角处的正方形观光休息亭的边长为5米 13.小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?
(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.
解:(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(10-x) cm,由题意得x2+(10-x)2=58,解得x1=3,x2=7,4×3=12,4×7=28,所以小林应把绳子剪成12 cm和28 cm的两段 
(2)假设能围成.由(1)得,x2+(10-x)2=48,化简得x2-10x+26=0,因为Δ=b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根,所以小峰的说法是对的 14.如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.
(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?
(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?
(3)在问题(1)中,△PBQ的面积能否等于7 cm2?说明理由.解:(1)设x秒后,△PBQ的面积等于4 cm2,根据题意得x(5-x)=4,解得x1=1,x2=4.
∵当x=4时 ,2x=8>7,不合题意,舍去,∴x=1  (2)设x秒后,PQ的长度等于5 cm,根据题意得(5-x)2+(2x)2=25,解得x1=0(舍去),x2=2,∴x=2 (3)设x秒后,△PBQ的面积等于7 cm2,根据题意得x(5-x)=7,此方程无解,所以不能课件13张PPT。21.3 实际问题与一元二次方程第3课时 用一元二次方程解决几何图形问题 要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?分析:这本书的长宽之比是27:21=9:7,正中央的矩形两边之比也为9:7,设中央的矩形的长和宽分别是9a cm和7a cm,由此得上、下边衬与左、右边衬的宽度之比也应为9:7,中央矩形的面积即可用含未知数的代数式表示,进而列出方程,求出答案.解:设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm.则中央矩形的长为(27-18x) cm,宽为(21-14x)cm
由题意,可列出方程为:
(27-18x)(21-14x)=
整理,得
16x2-48x+9=0
解方程,得
上、下边衬的宽均为_____cm,左、右边衬的宽均为_____cm.如果换一种设
未知数的方法,
是否可以更简
单的解决上面
的问题?方程的哪一个根
更符合实际
意义?为什么? 如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.10m或7.5m 如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃。设花圃的宽AB为x米,面积为S米2,
(1)求S与x的函数关系式;(2)如果要围成面积为45米2的花圃,AB的长是多少米?【解析】(1)设宽AB为x米,
则BC为(24-3x)米,这时面积
S=x(24-3x)=-3x2+24x
(2)由条件-3x2+24x=45
化为:x2-8x+15=0解得x1=5,x2=3
∵0<24-3x≤10得14/3≤x<8
∴x2不合题意,AB=5,即花圃的宽AB为5米1.如图是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米?解:设道路宽为x米,则化简得,其中的 x=35超出了原矩形的宽,应舍去.答:道路的宽为1米.2.如图,长方形ABCD,AB=15m,BC=20m,四周外围环绕着宽度相等的小路,已知小路的面积为246m2,求小路的宽度.化简得,答:小路的宽为3米.解:设小路宽为x米,则