(共26张PPT)
18.1.2 平行四边形的判定
第十八章 平行四边形
第3课时 三角形的中位线
1.理解三角形中位线的概念,掌握它的性质.(重点)
2.掌握三角形与平行四边形的相互转换,学会基本的添辅助线法.(难点)
3.能利用三角形的中位线定理解决有关证明和计算问题.(重点)
学习目标
问题 平行四边形的性质和判定有哪些?
复习引入
边:
角:
对角线:
B
O
D
A
C
AB∥CD, AD∥BC
AB=CD, AD=BC
AB∥CD, AB=CD
∠BAD=∠BCD,∠ABC=∠ADC
AO=CO,DO=BO
判定
性质
新课导入
三角形的中位线定理
一
概念学习
定义:连接三角形两边中点的线段叫做三角形的中位线.
A
B
C
D
E
如图,在△ABC中,D、E分别是AB、AC的中点,连接DE,则线段DE就称为△ABC的中位线.
讲授新课
问题1 一个三角形有几条中位线?你能在△ABC中画出它所有的中位线吗?
A
B
C
D
E
F
有三条,如图,△ABC的中位线是DE、DF、EF.
问题2 三角形的中位线与中线有什么区别?
中位线是连接三角形两边中点的线段.
中线是连接一个顶点和它的对边中点的线段.
问题3:如图,DE是△ABC的中位线,
DE与BC有怎样的关系?
D
E
两条线段的关系
位置关系
数量关系
分析:
DE与BC的关系
猜想:
DE∥BC
?
平行
角
平行四边形
或
线段相等
一条线段是另一条线段的一半
倍长短线
分析1:
D
E
猜想:
三角形的中位线平行于三角形的
第三边且等于第三边的一半.
问题4:如何证明你的猜想?
分析2:
D
E
互相平分
构造
平行四边形
倍长DE
证明:
D
E
延长DE到F,使EF=DE.
连接AF、CF、DC .
∵AE=EC,DE=EF ,
∴四边形ADCF是平行四边形.
F
∴四边形BCFD是平行四边形,
∴CF AD ,
∴CF BD ,
又∵ ,
∴DF BC .
∴ DE∥BC, .
如图,在△ABC中,点D,E分别是AB,AC边的中点,
求证:
证一证
D
E
证明:
延长DE到F,使EF=DE.
F
∴四边形BCFD是平行四边形.
∴△ADE≌△CFE.
∴∠ADE=∠F
连接FC.
∵∠AED=∠CEF,AE=CE,
证法2:
,AD=CF,
∴BD CF.
又∵ ,
∴DF BC .
∴ DE∥BC, .
∴CF AD ,
三角形的中位线平行于三角形的第三边且等于第三边的一半.
D
E
△ABC中,若D、E分别是边AB、AC的中点,
则DE∥BC,DE= BC.
三角形中位线定理:
符号语言:
要点归纳
A
B
C
D
E
F
重要发现:
①中位线DE、EF、DF把△ABC
分成四个全等的三角形;有三
组共边的平行四边形,它们是
ADFE和 BDEF, BFED和 CFDE, ADFE和 DFCE.
②顶点是中点的三角形,我们称之为中点三角形;中点三角形的周长是原三角形的周长的一半.面积等于原三角形面积的四分之一.
练一练
1. 如图,△ABC中,D、E分别是AB、AC中点.
(1) 若DE=5,则BC= .
(2) 若∠B=65°,则∠ADE= °.
(3) 若DE+BC=12,则BC= .
10
65
8
2.如图,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离为______m.
N
M
40
例2 如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.
解:∵M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,
∴PM= AB,PN= DC,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,
∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,
∴∠MPN=∠MPD+(180° ∠NPB)=130°,
∴∠PMN=(180° 130°)÷ 2 =25°.
例4 如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA中点.
求证:四边形EFGH是平行四边形.
四边形问题
连接对角线
三角形问题
(三角形中位线定理)
三角形的中位线与平行四边形的综合运用
二
分析:
证明:连接AC.
∵E,F,G,H分别为各边的中点,
∴ EF∥HG, EF=HG.
∴EF∥AC,
HG∥AC,
∴四边形EFGH是平行四边形.
顺次连接四边形四条边的中点,所得的四边形是平行四边形.
归纳
【变式】如图,E、F、G、H分别为四边形ABCD四边之中点.求证:四边形EFGH为平行四边形.
证明:如图,连接BD.
∵E、F、G、H分别为四边形ABCD四边之中点,
∴EH是△ABD的中位线,
FG是△BCD的中位线,
∴EH∥BD且EH= BD,
FG∥BD且FG= BD,
∴EH∥FG且EH=FG,
∴四边形EFGH为平行四边形.
证明:∵D、E分别为AB、AC的中点,
∴DE为△ABC的中位线,
∴DE∥ BC,DE= BC.
∵CF= BC,
∴DE=FC.
例5 如图,等边△ABC的边长是2,D、E 分别为AB、AC的中点,延长BC至点F,使CF= BC,连接CD和EF.
(1)求证:DE=CF;
例5 如图,等边△ABC的边长是2,D、E 分别为AB、AC的中点,延长BC至点F,使CF= BC,连接CD和EF.
(2)求EF的长.
解:∵DE∥FC,DE=FC,
∴四边形DEFC是平行四边形,
∴DC=EF,
∵D为AB的中点,等边△ABC的边长是2,
∴AD=BD=1,CD⊥AB,BC=2,
∴EF=DC= .
练一练
1.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为 ( )
A.8 B.10 C.12 D.16
D
2.如图, ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,求△DOE的周长.
解:∵ ABCD的周长为36,
∴BC+CD=18.
∵点E是CD的中点,
∴OE是△BCD的中位线,DE= CD,
∴OE= BC,
∴△DOE的周长为OD+OE+DE=
(BD+BC+CD)=15,
即△DOE的周长为15.
2.如图,在 ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于 ( )
A.2 B.3 C.4 D.5
1.如图,在△ABC中,点E、F分别为AB、AC的中点.若EF的长为2,则BC的长为 ( )
A.1 B.2 C.4 D.8
第2题图
第1题图
C
C
当堂练习
3.如图,点 D、E、F 分别是 △ABC 的三边AB、BC、 AC的中点.
(1)若∠ADF=50°,则∠B= °;
(2)已知三边AB、BC、AC分别为12、10、8,
则△ DEF的周长为 .
50
15
A
B
C
D
F
E
4.在△ABC中,E、F、G、H分别为AC、CD、 BD、 AB的中点,若AD=3,BC=8,则四边形EFGH的周长是 .
A
B
D
C
E
F
G
H
11
三角形的中位线
三角形中位线平行于第三边,并且等于它的一半
三角形的中位线定理
三角形的中位线定理的应用
课堂小结