(共21张PPT)
第十八章 平行四边形
18.2.1 矩 形
第2课时 矩形的判定
1.经历矩形判定定理的猜想与证明过程,理解并掌握
矩形的判定定理.(重点)
2.能应用矩形的判定解决简单的证明题和计算题.(难点)
学习目标
复习引入
问题1 矩形的定义是什么?
有一个角是直角的平行四边形叫做矩形.
问题2 矩形有哪些性质?
矩形
边:
角:
对角线:
对边平行且相等
四个角都是直角
对角线互相平分且相等
新课导入
对角线相等的平行四边形是矩形
一
类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.
除了定义以外,判定矩形的方法还有没有呢?
矩形是特殊的平行四边形.
类似地,那我们研究矩形的性质的逆命题是否成立.
讲授新课
已知:如图,在□ABCD中,AC , DB是它的两条对角线, AC=DB.求证:□ABCD是矩形.
证明:∵AB = DC,BC = CB,AC = DB,
∴ △ABC≌△DCB ,
∴∠ABC = ∠DCB.
∵AB∥CD,
∴∠ABC + ∠DCB = 180°,
∴ ∠ABC = 90°,
∴ □ ABCD是矩形(矩形的定义).
A
B
C
D
证一证
矩形的判定定理:
对角线相等的平行四边形是矩形.
要点归纳
几何语言描述:
在平行四边形ABCD中,∵AC=BD,
∴平行四边形ABCD是矩形.
A
B
C
D
思考 数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你现在知道为什么了吗?
对角线相等的平行四边形是矩形.
例1 如图,在□ABCD中,对角线AC,BD相交于点O,且OA=OD,∠OAD=50°.求∠OAB的度数.
A
B
C
D
O
解:∵四边形ABCD是平行四边形,
∴OA=OC= AC,
OB=OD= BD.
又∵OA=OD,
∴AC=BD,
∴四边形ABCD是矩形,
∴∠BAD=90°.
又∵∠OAD=50°,
∴∠OAB=40°.
典例精析
例2 如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.
B
C
D
E
F
G
H
O
A
证明:
∵四边形ABCD是矩形,
∴AC=BD(矩形的对角线相等),
AO=BO=CO=DO(矩形的对角线互相平分),
∵ AE=BF=CG=DH,
∴OE=OF=OG=OH,
∴四边形EFGH是平行四边形,
∵EO+OG=FO+OH,
即EG=FH,
∴四边形EFGH是矩形.
练一练
1.如图,在□ABCD中,AC和BD相交于点O,则下面条件能判定□ABCD是矩形的是 ( )
A.AC=BD B.AC=BC
C.AD=BC D.AB=AD
A
2.如图 ,□ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为什么?
A
B
C
D
O
1
2
解:四边形ABCD是矩形.
理由如下:
∵四边形ABCD是平行四边形,
∴ AO=CO,DO=BO.
又∵∠1= ∠2,
∴AO=BO,
∴AC=BD,
∴四边形ABCD是矩形.
有三个角是直角的四边形是矩形
二
问题1 上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?
逆命题:四个角是直角的四边形是矩形.
成立
问题2 至少有几个角是直角的四边形是矩形?
A
B
D
C
(有一个角是直角)
A
B
D
C
(有二个角是直角)
A
B
D
C
(有三个角是直角)
猜测:有三个角是直角的四边形是矩形.
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.
求证:四边形ABCD是矩形.
证明:∵ ∠A=∠B=∠C=90°,
∴∠A+∠B=180°,∠B+∠C=180°,
∴AD∥BC,AB∥CD.
∴四边形ABCD是平行四边形,
∴四边形ABCD是矩形.
A
B
C
D
证一证
矩形的判定定理:
有三个角是直角的四边形是矩形.
要点归纳
几何语言描述:
在四边形ABCD中,∵ ∠A=∠B=∠C=90°,
∴四边形ABCD是矩形.
A
B
C
D
思考 一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?
有三个角是直角的四边形是矩形.
例3 如图, □ ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形 EFGH为矩形.
证明:在□ ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.
∵AE与BG分别为∠DAB、
∠ABC的平分线,
A
B
D
C
H
E
F
G
∴四边形EFGH是矩形.
同理可证∠AED=∠EHG=90°,
∴∠AFB=90°,
∴∠GFE=90°.
∴ ∠BAE+ ∠ABF= ∠DAB+ ∠ABC=90°.
例4 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.
证明:在△ABC中,AB=AC,AD⊥BC,
∴∠BAD=∠DAC,即∠DAC= ∠BAC.
又∵AN是△ABC外角∠CAM的平分线,
∴∠MAE=∠CAE= ∠CAM,
∴∠DAE=∠DAC+∠CAE
= (∠BAC+∠CAM)=90°.
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四边形ADCE为矩形.
练一练
在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是 ( )
A.测量对角线是否相等
B.测量两组对边是否分别相等
C.测量一组对角是否都为直角
D.测量其中三个角是否都为直角
D
7.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形PQCD是平行四边形?
解:设经过xs,四边形PQCD为平行四边形,
即PD=CQ,
所以24-x=3x,
解得x=6.
即经过6s,四边形PQCD
是平行四边形.
能力提升:
(2)经过多长时间,四边形PQBA是矩形?
解:设经过ys,四边形PQBA为矩形,
即AP=BQ,
∴y=26-3y,
解得y=6.5,
即经过6.5s,四边形PQBA是矩形.
有一个角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
有三个角是直角的四边形是矩形.
运用定理进行计算和证明
矩形的判定
定义
判定定理
课堂小结