北师大版七年级数学下册第六章概率初步必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个袋中装有红、黑、黄三种颜色小球共15个,这些球除颜色外均相同,其中红色球有4个,若从袋中任意取出一个球,取出黄色球的概率为,则黑色球的个数为( )
A.3 B.4 C.5 D.6
2、 “投掷一枚硬币,正面朝上”这一事件是( )
A.必然事件 B.随机事件 C.不可能事件 D.确定事件
3、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是( )
A.的值一定是
B.的值一定不是
C.m越大,的值越接近
D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性
4、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )
A. B. C. D.
5、下列事件中,属于不可能事件的是( )
A.射击运动员射击一次,命中靶心
B.从一个只装有白球和红球的袋中摸球,摸出黄球
C.班里的两名同学,他们的生日是同一天
D.经过红绿灯路口,遇到绿灯
6、一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为()
A. B. C. D.
7、下列成语中,描述确定事件的个数是( )
①守株待兔;②塞翁失马;③水中捞月;④流水不腐;⑤不期而至;⑥张冠李戴;⑦生老病死.
A.5 B.4 C.3 D.2
8、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )
A. B. C. D.
9、在一个不透明的袋中装有9个只有颜色不同的球,其中4个红球、3个黄球和2个白球,从袋中任意摸出一个球,是白球的概率为( )
A. B. C. D.
10、 “抚顺市明天降雪的概率是70%”,对此消息,下列说法中正确的是( )
A.抚顺市明天将有70%的地区降雪
B.抚顺市明天将有70%的时间降雪
C.抚顺市明天降雪的可能性较大
D.抚顺市明天肯定不降雪
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在“Wishyousuccess”中,任选一个字母,这个字母为“s”的概率为_____.
2、有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称图形的卡片的概率为 __.
3、如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是4的倍数的概率是______________.
4、如果表示事件“三角形的任意两边之和大于第三边”,则________.
5、真实惠举行抽奖活动,在一个封闭的盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10%,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”______张.
三、解答题(5小题,每小题10分,共计50分)
1、某书城为了招徕顾客,设立了一个可以自由转动的转盘,如图,转盘被平均分成份,并规定:读者每购买元图书,就可获得一次转动转盘的机会,如果转盘停止后(指针对准分界线时重转),指针正好对准红色、黄色、绿色区域,那么读者就相应获得元、元、元的购书券,指针对准其它区域没有购书券,凭购书券可以在书城继续购书.
(1)任意转动一次转盘获得购书券的概率为 ;(直接填空)
(2)任意转动一次转盘获得元购书券的概率是多少?
2、一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖荼杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起.求颜色搭配正确和颜色搭配错误的概率各是多少.
3、已知一个纸箱中装有除颜色外完全相同的红球、黄球、黑球共80个,从中任意摸出一个球,摸到红球、黄球的概率分别为0.2和0.3.
(1)求黑球的数量;
(2)若从纸箱中取走若干个黑球,并放入相同数量的红球,要使从纸箱中任意摸出一个球是红球的概率为,求放入红球的数量.
4、在不透明的袋子里装有10个乒乓球,其中有2个是黄色的,3个是红色的,其余全是白色的,先拿出每种颜色的乒乓球各一个(不放回),再任意拿出一个乒乓球是红色的概率是多少?
5、某生物制剂公司以箱养的方式培育一批新品种菌苗,每箱有40株菌苗.若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂.某日工作人员随机抽检20箱菌苗,结果如表:
箱数 6 2 5 4 2 4
每箱中失活菌苗株数 0 1 2 3 5 6
(1)抽检的20箱平均每箱有多少株失活菌苗
(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂.请估计事件A的概率.
-参考答案-
一、单选题
1、C
【分析】
根据取到黄球的概率求出黄球个数,总数减去红黄球个数,即可得到黑球个数.
【详解】
根据题意可求得黄球个数为:15×=6个,
所以黑球个数为:15-6-4=5个,
故选:C.
【点睛】
本题考查的是概率计算相关知识,熟记概率公式是解答此题的关键.
2、B
【分析】
根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件即可得出答案.
【详解】
解:∵抛一枚硬币,可能正面朝上,也可能反面朝上,
∴“抛一枚硬币,正面朝上”这一事件是随机事件.
故选:B.
【点睛】
本题主要考查了必然事件、随机事件、不可能事件的概念,必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
3、D
【分析】
根据频率与概率的关系以及随机事件的定义判断即可
【详解】
投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事件,是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;
故选:D
【点睛】
本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.
4、B
【分析】
由题意,只要求出阴影部分与矩形的面积比即可.
【详解】
解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,
由几何概型公式得到最终停在阴影方砖上的概率为:;
故选:B.
【点睛】
本题将概率的求解设置于黑白方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.
5、B
【分析】
根据不可能事件的意义,结合具体的问题情境进行判断即可.
【详解】
解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;
B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;
C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;
D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.
6、D
【分析】
根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数即可求解.
【详解】
解:∵口袋中有2个红球,3个白球,
∴P(红球).
故选D.
【点睛】
本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),掌握随机事件概率的求法是解题关键.
7、C
【分析】
根据个成语的意思,逐个分析判断是否为确定事件即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】
解①守株待兔,是随机事件;
②塞翁失马,是随机事件;
③水中捞月,是不可能事件,是确定事件;
④流水不腐,是确定事件;
⑤不期而至,是随机事件;
⑥张冠李戴,是随机事件;
⑦生老病死,是确定事件.
综上所述,③④⑦是确定事件,共3个
故选C
【点睛】
本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.
8、C
【分析】
用绿灯亮的时间除以三种灯亮总时间即可解答.
【详解】
解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,
所以绿灯的概率是:.
故选C.
【点睛】
本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.
9、D
【分析】
根据袋子中共有9个小球,其中白球有2个,即可得.
【详解】
解:∵袋子中共有9个小球,其中白球有2个,
∴摸出一个球是白球的概率是,
故选D.
【点睛】
本题考查了概率,解题的关键是找出符合题目条件的情况数.
10、C
【分析】
概率值只是反映了事件发生的机会的大小,不是会一定发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.
【详解】
解:“抚顺市明天降雪的概率是70%”,正确的意思是:抚顺市明天降雪的机会是70%,明天降雪的可能性较大.
故选C.
【点睛】
本题考查概率的意义,解题关键是理解概率的意义反映的只是这一事件发生的可能性的大小.
二、填空题
1、
【分析】
根据概率公式进行计算即可.
【详解】
解:任选一个字母,这个字母为“s”的概率为:,
故答案为:.
【点睛】
本题考查了概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
2、
【分析】
卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式=满足条件的样本个数总体的样本个数,可求出最终结果.
【详解】
解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,
根据概率公式,(轴对称图形).
故答案为:.
【点睛】
本题主要考查概率问题,属于基础题,掌握轴对称图形的性质以及概率公式是解题关键.
3、
【分析】
根据从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,得出是4的倍数的数据,再根据概率公式即可得出答案.
【详解】
解:∵从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是4的倍数的有:4,8共2个,
∴取到的数恰好是4的倍数的概率是.
故答案为:.
【点睛】
本题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
4、1
【分析】
根据必然事件的定义即可知,在一定条件下,一定会发生的事件称为必然事件,必然事件的概率为1.
【详解】
三角形的任意两边之和大于第三边,
事件“三角形的任意两边之和大于第三边”是必然事件,
1.
【点睛】
本题考查了必然事件的概率,掌握必然事件的定义是解题的关键.
5、260
【分析】
先求出一等奖的概率,然后利用频数=总数×概率求解即可.
【详解】
解:由题意得:一等奖的概率=,
∴盒子中有“谢谢惠顾”张,
故答案为:260.
【点睛】
本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总数×概率.
三、解答题
1、(1);(2)
【分析】
(1)根据概率公式直接求解即可;
(2)用绿色区域的份数除以总分数即可得出获得25元的概率.
【详解】
解:(1)∵转盘被分成了12份,有颜色的有6份,
∴任意转动一次转盘获得购书券的概率是;
故答案为:;
(2)∵转盘被分成了12份,绿颜色的有3份,
∴获得25元的概率是.
【点睛】
本题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解决本题的关键是得到相应的概率.
2、P(颜色搭配正确) =, P(颜色搭配错误)=.
【分析】
根据概率的计算公式,颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.
【详解】
用A和a分别表示第一个有盖茶杯的杯盖和茶杯;
用B和b分别表示第二个有盖茶杯的杯盖和茶杯,经过搭配所能产生的结果如下:
Aa、Ab、Ba、Bb.
所以,一共有4种可能,颜色搭配正确的有2种可能,概率是; 颜色搭配错误的有2种可能,概率是.
P(颜色搭配正确) =, P(颜色搭配错误)=.
【点睛】
此题主要考查概率的计算公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,熟练运用公式是解题关键.
3、(1)40;(2)24.
【分析】
(1)用所有的球减去红球和黄球的数量即可得出答案;
(2)设放进个红球,根据摸出红球的概率为列出方程,解方程即可得出答案.
【详解】
解:(1)(个)
故答案为:40.
(2)设放进个红球
由题意得
解得:
∴放进24个红球.
故答案为24.
【点睛】
本题考查的概率,找到相应的关系式是解决本题的关键,用到的知识点为:概率=所求情况数与总情况数之比.
4、
【分析】
根据剩下7个小球拿一个的可能性有7种,其中红球的可能性是2种即可求解.
【详解】
解:先拿出每种颜色的乒乓球各一个(不放回),则还剩下7个小球,其中红色的球2个,
∴剩下7个小球拿一个的可能性有7种,其中红球的可能性是2种,
∴再任意拿出一个乒乓球是红色的概率是 .
【点睛】
本题主要考查了概率的计算,用到的知识点为:概率所求情况数与总情况数之比.
5、(1)抽检的20箱平均每箱有2.9株失活菌苗;(2)事件A的概率为
【分析】
(1)根据题意及表格可直接进行求解;
(2)由题意知当每箱中失活菌苗株数为40×10%=4株的时候需喷洒营养剂,然后根据表格及概率公式可直接进行求解.
【详解】
解:(1)由表格得:
(株);
答:抽检的20箱平均每箱有2.9株失活菌苗;
(2)由题意得:40×10%=4株,
∴当每箱中失活菌苗株数为4株时,则需喷洒营养剂,
∴,
即事件A的概率为.
【点睛】
本题主要考查概率,熟练掌握概率的求解是解题的关键.