人教版数学 18.2 第1课时 菱形的性质

文档属性

名称 人教版数学 18.2 第1课时 菱形的性质
格式 pptx
文件大小 6.9MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-03-25 14:17:11

图片预览

文档简介

(共27张PPT)
18.2.2 菱 形
第十八章 平行四边形
第1课时 菱形的性质
1.了解菱形的概念及其与平行四边形的关系.
2.探索并证明菱形的性质定理.(重点)
3.应用菱形的性质定理解决相关计算或证明问题.(难点)
学习目标
平行
四边形
矩形
前面我们学行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩形.
有一个角是直角
菱形的性质

讲授新课
思考 如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢
平行四边形
定义:有一组邻边相等的平行四边形.
菱形
邻边相等
菱形是特殊的平行四边形.
平行四边形不一定是菱形.
要点归纳
活动1 如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?观看下面视频:
活动2 在自己剪出的菱形上画出两条折痕,折叠手中
的图形(如图),并回答以下问题:
问题1 菱形是轴对称图形吗 如果是,指出它的对称轴.
是,两条对角线所在直线都是它的对称轴.
问题2 根据上面折叠过程,猜想菱形的四边在数量上
有什么关系 菱形的两条对角线有什么关系
猜想1 菱形的四条边都相等.
猜想2 菱形的两条对角线互相垂直,并且每一条对
角线平分一组对角.
已知:如图,在□ABCD中,AB=AD,对角线AC与BD相交于点O.
求证:(1)AB = BC = CD =AD;
(2)AC⊥BD;
∠DAC=∠BAC,∠DCA=∠BCA,
∠ADB=∠CDB,∠ABD=∠CBD.
证明:(1)∵四边形ABCD是平行四边形,
∴AB = CD,AD = BC(平行四边形的对边相等).
又∵AB=AD,
∴AB = BC = CD =AD.
A
B
C
O
D
证一证
(2)∵AB = AD,
∴△ABD是等腰三角形.
又∵四边形ABCD是平行四边形,
∴OB = OD (平行四边形的对角线互相平分).
在等腰△ABD中,
∵OB = OD,
∴AO⊥BD,AO平分∠BAD,
即AC⊥BD,∠DAC=∠BAC.
同理可证∠DCA=∠BCA,
∠ADB=∠CDB,∠ABD=∠CBD.
A
B
C
O
D
菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.
对称性:是轴对称图形.
边:四条边都相等.
对角线:互相垂直,且每条对角线平分一组对角.
角:对角相等.
边:对边平行且相等.
对角线:相互平分.
菱形的特殊性质
平行四边形的性质
要点归纳
1.菱形具有而一般平行四边形不具有的性质是( )
A.对角相等 B.对边相等
C.对角线互相垂直 D.对角线相等
C
2.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于(  )
A. B.4
C.4 D.20
当堂练习
C
1.如图,在菱形ABCD中,已知∠A=60°,AB=
5,则△ABD的周长是 (  )
A.10 B.12 C.15 D.20
C
练一练
2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长为_______.
第1题图
第2题图
6cm
典例精析
例1 四边形ABCD是菱形,对角线AC,BD相交于点O,且AB = 5,AO = 4.求AC和BD的长.
解:如图所示,因为四边形ABCD是菱形,
所以AC⊥BD,且AO=CO,OB=OD.
又因为AB=5,AO=4,
所以在Rt△AOB中,OB=
所以BD=2OB=2×3=6,AC=2AO=2×4=8.
菱形的面积

问题1 菱形是特殊的平行四边形,那么能否利用平行四边形的面积公式计算菱形ABCD的面积呢
A
B
C
D
思考 前面我们已经学习了菱形的对角线互相垂直,那么能否利用对角线来计算菱形ABCD的面积呢
能.过点A作AE⊥BC于点E,
则S菱形ABCD=底×高
=BC·AE.
E
问题2 如图,四边形ABCD是菱形,对角线AC,BD交于点O,试用对角线表示出菱形ABCD的面积.
A
B
C
D
O
解:∵四边形ABCD是菱形,
∴AC⊥BD,
∴S菱形ABCD=S△ABC +S△ADC
= AC·BO+ AC·DO
= AC(BO+DO)
= AC·BD.
你有什么发现?
菱形的面积 = 底×高 = 对角线乘积的一半
菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.
归纳
练一练
如图,已知菱形的两条对角线长分别为6cm和8cm,则这个菱形的高DE为(  )
A.2.4cm B.4.8cm C.5cm D.9.6cm
B
解:∵四边形ABCD是菱形,BD=4,
∴OA=OC=AC,OB=OD= BD=2,AC⊥BD.
∵在Rt△OCD中,∠OCD=30°,
∴CD=2OD=4,
∴AC=2OC=4 .∴S菱形ABCD= AC·BD= ×4 ×4=8 .
变式 如图,在菱形ABCD中,点O为对角线AC与BD的交点,且在△AOB中,OA=5,OB=12.求菱形ABCD两对边的距离h.
解:在Rt△AOB中,OA=5,OB=12,
∴S△AOB= OA·OB= ×5×12=30,
∴S菱形ABCD=4S△AOB=4×30=120.

又∵菱形两组对边的距离相等,
∴S菱形ABCD=AB·h=13h,
∴13h=120,得h= .
4.如图,四边形ABCD是边长为13cm的菱形,其中对
角线BD长10cm.
求:(1)对角线AC的长度;
(2)菱形ABCD的面积.
解:(1)
∵四边形ABCD是菱形,
∴∠AED=90°,
(2)菱形ABCD的面积
∴AC=2AE=2×12=24(cm).
D
B
C
A
E
例2 如图,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F,求证:AE=AF.
证明:连接AC.
∵四边形ABCD是菱形,
∴AC平分∠BAD,
即∠BAC=∠DAC.
∵CE⊥AB,CF⊥AD,
∴∠AEC=∠AFC=90°.
又∵AC=AC,
∴△ACE≌△ACF.
∴AE=AF.
菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.
归纳
例5 如图,菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(结果分别精确到0.01m和0.1m2 ).
A 
B 
C 
D 
O 
解:∵花坛ABCD是菱形,
例3 如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.
A
B
C
D
O
E
证明:∵四边形ABCD为菱形,
∴AD∥BC,AD=BA,
∠ABC=∠ADC=2∠ADB ,
∴∠DAE=∠AEB,
∵AB=AE,∴∠ABC=∠AEB,
∴∠ABC=∠DAE,
∵∠DAE=2∠BAE,∴∠BAE=∠ADB.
又∵AD=BA ,
∴△AOD≌△BEA ,
∴AO=BE .
3.根据下图填一填:
(1)已知菱形ABCD的周长是12cm,那么它的边长
是 ______.
(2)在菱形ABCD中,∠ABC=120 °,则∠BAC=
_______.
3cm
30°
A
B
C
O
D
(3)菱形的一个内角为120°,平分这个内角的对角
线长为11cm,菱形的周长为______.
44cm
(4)菱形的面积为64cm2,两条对角线的比为 1∶2 ,
那么菱形最短的那条对角线长为_______.
8cm
A
B
C
O
D
5.如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E. 求证:∠AFD=∠CBE.
证明:∵四边形ABCD是菱形,
∴CB=CD, CA平分∠BCD.
∴∠BCE=∠DCE.
又 CE=CE,
∴△BCE≌△DCE(SAS).
∴∠CBE=∠CDE.
∵在菱形ABCD中,AB∥CD,
∴∠AFD=∠EDC.
∴∠AFD=∠CBE.
A
D
C
B
F
E
6.如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.
(1)求OC的长;
(2)求四边形OBEC的面积.
解:(1)∵四边形ABCD是菱形,∴AC⊥BD.
在Rt△OCD中,由勾股定理得OC=4cm;
(2)∵CE∥DB,BE∥AC,
∴四边形OBEC为平行四边形.
又∵AC⊥BD,即∠COB=90°,
∴平行四边形OBEC为矩形.
∵OB=OD=3cm,
∴S矩形OBEC=OB·OC=4×3=12(cm2).
菱形的性质
菱形的性质
有关计算

1.周长=边长的四倍
2.面积=底×高=两条对角线乘积的一半

对角线
1.两组对边平行且相等;
2.四条边相等
两组对角分别相等,邻角互补
1.两条对角线互相垂直平分;
2.每一条对角线平分一组对角
课堂小结