(典型易错题)第四单元分数的意义和性质选择题-2023-2024学年五年级下册数学高频易错重难点专项培优卷(人教版)(含解析)

文档属性

名称 (典型易错题)第四单元分数的意义和性质选择题-2023-2024学年五年级下册数学高频易错重难点专项培优卷(人教版)(含解析)
格式 docx
文件大小 305.2KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2024-03-24 08:56:45

图片预览

文档简介

第四单元分数的意义和性质选择题
1.的分母加上7,要使分数的大小不变,分子再( )。
A.加上7 B.加上8 C.乘2
2.大于,小于的分数有(  )个.
A.1个 B.2个 C.3个 D.无数个
3.和这两个分数的(  )
A.意义相同 B.分数值相同 C.分数单位相同 D.都是最简分数
4.自然数a除以自然数b,商是6,这两个自然数的最小公倍数是(  )
A.a B.b C.6 D.无法确定
5.最大公因数是1的一组数是( )。
A.15和5 B.15和14 C.38和20 D.100和65
6.把2米长的材料,锯成7段,共用去8分钟,平均锯一次用了总时间的(  )
A.1/7 B.1/6 C.1/8 D.1/4
7.若a,b,c,d是不为0的自然数,已知a>b>c>d,那么,,,,这四个数中最大的是( )。
A. B. C. D.
8.50以内6和8的公倍数有(  )
A.24、48 B.18、24、30 C.30、48
9.一盒巧克力36块,平均分给4个小朋友,每个小朋友分得的巧克力块数占这盒巧克力总数的(  ),每个小朋友分得(  )块.
A.6 B.9 C. D.
10.下面各数分数单位最大的是( )。
A. B. C.
11.班人数的与六(二)班人数的同样多,则(  )班人数最少.
A.一样多 B.六(一) C.六(二) D.无法确定
12.下面每组分数中相等的分数是(  )
A.和 B.和 C.和1
13.把一根铁丝对折再对折,每﹣折是这根铁丝的(  )
A. B. C.
14.大于而小于的分数有( )个。
A.3 B.4 C.无数
15.的分子加上6,要使分数的大小不变,分母应乘上( )。
A.6 B.5 C.4 D.3
16.一个乘法等式中,( )可以看做等号另一端的因数
A.乘数 B.积 C.都不是
17.为了做好疫情防控复课的准备工作,某小学购进了一批消毒液对校园场所实施全面消毒,用去全部消毒液的后还剩吨。用去的消毒液与剩下的消毒液相比较,( )。
A.一样多 B.剩下的多 C.用去的多 D.无法比较
18.下面几个分数中,不能化成有限小数的是( )。
A. B. C.
19.把一根铁丝剪成两段,第一段占全长的,第二段长米,这两段铁丝相比较(  )
A.第一段长 B.第二段长 C.无法确定
20.分数的分母,相当于除法里的( )。
A.被除数 B.除数 C.商
21.的分子加上4,如果要使这个分数的大小不变,分母应该( )。
A.加上15 B.加上4 C.增加到原来的3倍
22.比较百、、三个分数的大小,正确的是(  )
A.>> B.>> C.>> D.>>
23.甲数的与乙数的相等,那么甲(  )乙.
A.< B.> C.﹦
24.把一根木头截成两段,第一段长米,第二段占全长的,那么这两段木头( )。
A.第一段比第二段长B.第一段比第二段短
C.两段相等 D.无法比较
25.240是24和30的(  )
A.最大公因数 B.公倍数 C.公因数 D.最小公倍数
26.把20克糖放入200克水中,糖占糖水的( )。
A. B. C.
27.一个学习小组有男生6人,女生4人,男生占这个小组人数的( )。
A. B. C.
28.与相等的分数是(  )
A. B. C. D.
29.一杯纯牛奶,东东喝了杯后,加满温开水又喝了半杯,再加满温开水喝完。东东喝的纯牛奶多还是温开水多?( )
A.纯牛奶多 B.温开水多 C.一样多 D.无法比较
30.一根木条被截成两段,第一段长,第二段占全长的,这两段木条长度相比,( )。
A.第一段长 B.第二段长 C.一样长 D.无法比较
31.把40克糖放入60克水中,糖是糖水的( ).
A. B. C.
32.下列选项中,与不相等的是( )。
A. B. C. D.
33.把一张长方形纸对折三次,其中一份是这张纸的( )。
A. B. C. D.
34.一个最简真分数,分子和分母的积是77,和是18,这个最简真分数是( )
A. B. C.
35.一条的绳子,已经用去米,还剩下全长的,剩下的和用去的绳子相比,( )比较长。
A.用去的长 B.剩下的长 C.一样长 D.无法确定
36.被除数扩大到原来的10倍,除数缩小到的原来的,商( )。
A.扩大到原来的5倍 B.不变
C.缩小到原来的 D.扩大到原来的50倍
37.一根绳子,用去,还剩1.5m,用去的部分和剩下的部分比较( )。
A.用去的部分长 B.剩下的部分长 C.一样长 D.无法比较
38.下面的分数从大到小排列,正确的是( ).
A. B. C. D.
39.把0.72化成最简分数是( )。
A. B. C.
40.如果a小于b,c小于a,b小于d,那么下面分数中,最大的一个是(  )
A. B. C. D.
41.下图阴影部分占整个图形的( )。
A. B. C.
42.一根绳子第一次剪去,第二次剪去米,两次剪去的长度相比( ).
A.第一次长 B.第二次长 C.同样长 D.三种情况都有可能
43.根据“女生人数占全班人数的”.这句话可以断定这个班(  )人数多.
A.女生 B.男生 C.男女生一样多
44.三根铁丝分别长24厘米、36厘米和48厘米,如果把它们截成长短一样的小段且没有剩余,每段最多长( )厘米,共可截( )段。
A.8;18 B.9;12 C.12;8 D.12;9
45.和比较( )。
A.分数单位相同 B.大小相同 C.意义相同
46.在自然数中,,,a和b的最大公因数是( )。
A.30 B.15 C.3
47.分数的分子加3,要使分数值不变,分母应( )。
A.加3 B.加6 C.乘2 D.乘3
48.下面各数中(  )与1最接近.
A. B.1 C. D.
49.2米的(  )1米的.
A.大于 B.小于 C.等于
50.把5kg糖果平均分装在8个袋子中,每袋糖果( )kg。
A. B. C. D.
参考答案:
1.C
【分析】分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变;的分母加上7,相当于分母乘2,要使分数的大小不变,分子也要乘2。
【详解】7+7=14
14÷7=2
4×2-4
=8-4
=4
的分母加上7,要使分数的大小不变,分子再乘2或加上4。
故答案为:C
2.D
【详解】试题分析:比小而比大的分数有无数个,因为有分母是12的,还可以把和通分,符合条件的还有分母是143的、286的、429的…,据此进行选择.
解:大于,小于的分数有无数个;
故选D.
点评:此题考查比小而比大的分数有多少个,要考虑两个分数通分后,所以符合条件的数有无数个.
3.B
【详解】试题分析:看分母,去理解意义与分数单位,比较两个分数,首先通分,化为同分母分数即可比较大小,由此逐一判定即可.
解:A、表示把单位“1”平均分成3份,取其中的2份;表示表示把单位“1”平均分成6份,取其中的4份;所以意义相同不正确;
B、=,正确;
C、的分数单位是,的分数单位是,所以分数单位相同不正确;
D、约分是,不正确.
故选B.
点评:此题主要利用分数的意义、分数单位以及分数的大小比较来解决问题.
4.A
【详解】试题分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;由此选择情况解决问题.
解:由a÷b=6可知,数a是数b的6倍,属于倍数关系,a>b,
所以a和b最小公倍数是a;
故选A.
点评:此题主要考查求两个数为倍数关系时两个数的最小公倍数:两个数为倍数关系,则最小公倍数为较大的数.
5.B
【分析】求最大公因数也就是求这几个数的公有质因数的连乘积,若两个数互为倍数关系,则较小数就是它们的最大公因数;若两个数是互质数,则它们的最大公因数是1,据此求出各项的结果,再选择即可。
【详解】A.因为15÷5=3,所以15和5互为倍数关系,则15和5的最大公因数是5;
B.15和14是互质数,所以15和14的最大公因数是1;
C.38=2×19
20=2×2×5
则38和20的最大公因数是2;
D.100=2×2×5×5
65=5×13
则100和65的最大公因数是5。
故答案为:B
【点睛】本题考查最大公因数,明确求最大公因数的方法是解题的关键。
6.B
【详解】试题分析:把2米长的材料,锯成7段,则需要铖7﹣1=6次,根据分数的意义,平均锯一次的时间占总时间的1÷6=.
解:1÷(7﹣1)
=1÷6,
=.
故选B.
点评:完成此类锯木问题要注意:锯的次数﹣1=段数.本题中“8分钟”是多余条件.
7.D
【分析】分子是1的分母,比较大小,可以通过看他们的分母大小来比较,分母越大的分数越小,相当于把1平均分成几份,份数越多就是分母越大,则每一份就越小。
【详解】根据分析得:已知a>b>c>d,所以,最大的是。
故答案为:D
【点睛】此题主要考查学生对于分数大小的比较方法的掌握情况。
8.A
【详解】试题分析:先把6和8进行分解质因数,这两个数的公有质因数与独有质因数的连乘积是它们的最小公倍数;由此解答求出6和8的最小公倍数,进而找出50以内的6和8的公倍数.
解:6=2×3,
8=2×2×2,
所以6和8的最小公倍数是:2×2×2×3=24;
所以50以内6和8的公倍数有:24、48;
故选A.
点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.
9.BD
【详解】试题分析:(1)求每个小朋友分得的巧克力块数占这盒巧克力总数的几分之几,表示把这盒巧克力的总块数看作单位“1”,把单位“1”平均分成4份,求的是每一份占的分率;平均分的是单位“1”;
(2)求每个小朋友分得的块数,平均分的是具体的数量36块,表示把36块平均分成4份,求的每一份的具体的数量,平均分的是具体的数量;都用除法计算.
解:(1)1;
答:每个小朋友分得的巧克力块数占这盒巧克力总数的.
(2)36÷4=9(块);
答:每个小朋友分得9块.
故选D,B.
点评:解决此题关键是弄清求得是具体的数量还是分率,求具体的数量平均分的是具体的数量;求分率平均分的是单位“1”.
10.A
【分析】一个分数的分数单位是分母分之一,由此找出各项的分数单位,再比较大小即可。
【详解】的分数单位是;的分数单位是;的分数单位是;
>>,所以的分数单位最大。
故答案为:A
【点睛】分数的分母越大其分数单位越小。
11.B
【详解】试题分析:由题意知:六(一)班人数的与六(二)班人数的同样多,即六(一)班人数的×=六(二)班人数×,根据比例的性质求出六(一)班与六(二)班人数的比,即可求出哪班人数最少.
解:六(一)班人数×=六(二)班人数×,
六(一)班人数:六(二)班人数=:=×=,
所以六(一)班人数比六(二)班人数少;
故选B.
点评:本题主要考查学生灵活运用比例的性质求出比,进而进行两数的大小比较.
12.B
【详解】试题分析:分母相同,分子大的分数值就大;分子相同,分母大的分数值反而小;分子分母都不相等,通分令分母相同,分子大的分数值就大;即可得解.
解:A、>,故不符合题意;
B、=1,=1,所以=,故正确;
C、<1,故不符合题意;
故选B.
点评:此题考查了分数的大小比较方法的运用.
13.B
【详解】试题分析:把一根铁丝对折后再对折,相当于把这根绳子平均分成了4份,求现在的长度是原来的几分之几,也就是求1份占4份的几分之几,求的是分率,用1÷4计算.
解:1,
即把一根铁丝对折再对折,每﹣折是这根铁丝的 .
故选B.
点评:解决此题关键是理解把一根绳子对折后再对折,相当于是把这根绳子平均分成了4份,进而根据分数的意义解答.
14.C
【分析】大于而小于的同分母分数有、、;如果根据分数的基本性质,、的分子、分母都乘2就是、,大于而小于的分数有分母是12,分子是3、4、5、6、7、8、9的7个分数;、的分子分母都乘3就是、,大于而小于的分数有分母是18,分子是4、5、6、7、8、9、10、11、12、13、14的11个分数;、的分子、分母都乘4、5、6…它们之间的分数有无数个。
【详解】根据分析可知,大于而小于的分数有无数个。
故答案为:C
【点睛】根据分数的基本性质,把两个不相等的分数的分子、分母都乘一个大于1的自然数,它们之间的就会新的分数出现,因此,任何两个分数之间都有无数个分数。
15.C
【分析】分数的基本性质:分数的分子和分母同时乘或除以同一个数(零除外),分数大小不变;把的分子加上6,分子扩大了4倍,分母也应扩大4倍,据此解答即可。
【详解】因为把的分子加上6,
(6+2)÷2=4,分子扩大了4倍,
所以分母也应扩大4倍,3×4=12。
故答案为:C
【点睛】此题主要考查了分数的基本性质的应用。
16.A
【详解】积和乘数是相对的,积是乘数的倍数,乘数是积的因数
17.C
【分析】用去全部消毒液的后还剩吨,第一个是把全部消毒液看作单位“1”,第二个是具体的数量。据此解答即可。
【详解】由题意可知,用去的消毒液占全部的,那么剩下的消毒液占全部的。因为,所以用去的消毒液多。
故答案为:C
【点睛】正确理解分数的意义是解题关键。
18.B
【分析】一个最简分数,如果分母中除了2和5(2或5)以外,不含有其他质因数,这个分数就能化成有限小数;如果分母中含有2和5(2或5)以外的质因数,这个分数就不能化成有限小数。
【详解】A.的分母只含有质因数2,所以可以化为有限小数;
B.=,的分母中含有质因数3,所以不能化为有限小数;
C.的分母中只含有质因数5,所以可以化为有限小数。
故答案为:B
【点睛】本题考查一个最简分数能否化成有限小数的判断方法,判断时要注意:这个分数必须是最简分数,还要掌握分解质因数的方法。
19.A
【详解】试题分析:把一根铁丝剪成两段,第一段占全长的,则把铁丝的全长看作是单位“1”,第二段就占了全长的1﹣=,再同第一段进行比较即可.
解:第二段铁丝占了全长的:
1﹣=,
>,所以第一段铁丝长.
故选A.
点评:本题的重点是求出第二段铁丝占了全长的几分之几,再同第一段铁丝进行比较.
20.B
【分析】根据分数与除法的关系,分数的分子相当于除法中的被除数,分母相当于除法中的除数,分数值相当于除法中的商。
【详解】分数的分母,相当于除法里的除数。
故答案为:B
【点睛】此题是考查分数与除法的关系,属于基础知识,要掌握。
21.A
【分析】根据分数的基本性质,分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。分子加上4,分子等于8,相当于分子扩大到原来的2倍,所以分母也要乘2,或者增加15×2-15=15,据此选择。
【详解】4+4=8
8÷4=2
15×2-15
=30-15
=15
即分母应该加上15。
故答案为:A
【点睛】此题的解题关键是熟练运用分数的基本性质来求解。
22.C
【详解】试题分析:此题可先比较和两个分数的大小,根据“分母相同,分子大的分数就大”可知>;然后再比较与的大小,根据“分子相同,分母大的反而小”,可知>.据此解答.
解:因为>,又>.
所以>>.
故选C.
点评:此题考查了知识点:分母相同,分子大的分数就大;分子相同,分母大的反而小.
23.A
【详解】试题分析:由甲数的与乙数的相等可得,甲数×=乙数×,两两相乘的数的积相等,乘较大数的数较小,据此判断后选择.
解:甲数×=乙数×,
因为>,乘较大数的数较小,
所以甲数<乙数.
故选A.
点评:此题关键明白“两两相乘的数的积相等,乘较大数的数较小”这个知识点.
24.A
【分析】一根木头截成两段,第二段占全长的,那么第一段就占全长的(1-),由此比较即可。
【详解】解:1-=

第一段比第二段长。
故答案为:A
【点睛】根据分数的意义进行分析是完成本题的关键,“米”在本题中属多余条件。
25.B
【详解】试题分析:根据求两个数最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积求解.
解:24=2×2×2×3,
30=2×3×5,
所以24和30的最大公约数是2×3=6,最小公倍数是2×3×2×2×5=120.
120×2=240,
故240是24和30的公倍数.
故选B.
点评:考查了求几个数的最大公因数的方法与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.
26.A
【分析】A是B的几分之几的计算方法:A÷B=,结果化为最简分数,糖占糖水的分率=糖的质量÷糖水的质量,据此解答。
【详解】20÷(20+200)
=20÷220

所以,糖占糖水的。
故答案为:A
【点睛】掌握求一个数占另一个数几分之几的计算方法是解答题目的关键。
27.B
【分析】这个学习小组有男生6人,女生4人,则总人数为6+4=10(人);其中男生占这个小组人数的6÷10=。
【详解】由分析得:
一个学习小组有男生6人,女生4人,男生占这个小组人数的。
故答案为:B。
【点睛】要求一个数是另一个数的几分之几,就用这个数除以另一个数。这是解答本题的思路。
28.B
【详解】试题分析:根据分数大小比较的方法,分母相同的两个分数分子大的分数就大;分子相同的两个分数分母小的分数就大;如果分数的分子和分母各不相同,需要通过约分或通分转化,然后再进行比较;由此解答.
解:=;把下面的分数约分后再进行比较;
A.;
B.;
C.;
D.;
由此得:;
故选B.
点评:此题主要考查分数大小的比较方法,分母相同的两个分数分子大的分数就大;分子相同的两个分数分母小的分数就大;如果分数的分子和分母各不相同,需要通过约分或通分转化,然后再进行比较;由此解答.
29.A
【分析】东东喝了杯后,然后加满开水又喝了半杯,即加入的水是原来牛奶的,则又喝了半杯后,又加了的水,共喝了水+,由于纯牛奶只有一杯,如果全部喝完的话无论怎么喝,东东也只能喝一杯牛奶,算出后比较即可。
【详解】+=
1>
故答案为:A
【点睛】完成本题时不要被所给条件干扰,弄清问题实质是关键。
30.B
【分析】把这根木条的长度看作单位“1”,第二段占全长的,则第一段占全长的(1-),比较两个分数的大小即可。
【详解】第一段占全长的分率:1-=
第二段占全长的分率:
因为>,所以第二段木条长。
故答案为:B
【点睛】通过比较分率的大小确定两段木条的长短是解答题目的关键。
31.A
【分析】糖是糖水的几分之几=,据此代入数据作答即可.
【详解】糖是糖水的40÷(40+60)=.
故答案为:A.
32.C
【分析】分别计算出每个选项的计算结果,再与进行比较,据此解答。
【详解】A.==
B.==
C.==
D.==
故答案为:C
【点睛】本题解题的关键是熟练掌握约分的方法。
33.C
【分析】对折三次将长方形纸平均分成(2×2×2)份,根据分数的分母表示平均分的份数,分子表示取走的份数,写出其中一份是这张纸的几分之一即可。
【详解】2×2×2=8(份)
把一张长方形纸对折三次,其中一份是这张纸的。
故答案为:C
【点睛】关键是理解分数的意义,把整体平均分为若干份,这样的一份或几份都可以用分数来表示。
34.B
【详解】试题分析:根据最简真分数的意义,分数的分子小于分母且分子和分母只有公因数1的分数叫做最简真分数.已知一个最简真分数的分子和分母的积是77,和是18,根据分解质因数的方法,把77分解质因数即可.
解:把77分解质因数,
77=7×11
且7+11=18
所以这个最简真分数是.
故选B.
【点评】此题考查的目的是理解掌握最简真分数的意义.
35.B
【分析】根据题意可知,用去的长度占全长的1-=,<,所以剩下的长度比用去的长,据此解答即可。
【详解】1-=;
<,所以剩下的长度比用去的长;
故答案为:B。
【点睛】一根绳子问题,只考虑表示关系的数即可,切勿被具体的数干扰。
36.D
【分析】此题用赋值法,假设原来的被除数是100,除数是10;变化后的被除数是100×10,除数是10÷5,再根据被除数÷除数=商,分别求出变化前后的商,再对比即可。
【详解】假设原来的被除数是100,除数是10
(100×10)÷(10÷5)
=1000÷2
=500
100÷10=10
500÷10=50
则商扩大到原来的50倍。
故答案为:D
【点睛】本题考查商的变化规律,运用特值法可快速解题。
37.B
【分析】把这根绳子的总长度看成单位“1”,用去,还剩下(1-);比较这两个分率的大小即可。
【详解】1
即剩下的部分比用去的部分长。
故答案为:B
【点睛】解答本题时要明确:分数带单位表示具体的量,不带单位表示整体的几分之几。
38.B
【详解】先判断三个分数分母的最小公倍数,然后根据分数的基本性质把三个分数通分成分母是40的分数,再根据同分母分数比较大小的方法从大到小排列即可.
所以
故答案为B
39.B
【分析】先将0.72化成分母是100的分数,再根据分数的基本性质,约分成最简分数即可。
【详解】
把0.72化成最简分数是。
故答案为:B
【点睛】关键是掌握小数化分数的方法。
40.D
【详解】试题分析:由“a小于b,c小于a,b小于d”,推出a、b、c、d之间的大小关系,又因为这四个分数都是同分母分数,根据a、b、c、d的大小,即可推出这四个分数的大小关系.
解:因为a<b,c<a,b<d,
所以c<a<b<d,
因此,<<<,
所以,最大.
故选D.
点评:此题先求出a、b、c、d之间的大小关系,再根据同分母分数比较的方法:同分母分数相比较,分子大的那个分数就大,解决问题.
41.C
【分析】把整个长方形的面积看作单位“1”,平均分成3份,涂色的部分占其中的1份,用分数表示,据此选择即可。
【详解】由分析可知:
阴影部分占整个图形的。
故答案为:C
【点睛】本题考查分数的意义,明确分数的意义是解题的关键。
42.A
【详解】略
43.A
【详解】试题分析:把全班人数看做“1”,其中女生占,则男生占多少用减法,然后判断男女生所占比率的大小,即可得解.
解:1﹣=,

答:根据“女生人数占全班人数的”.这句话可以断定这个班女生人数多;
故选A.
点评:此题主要利用分数的意义、分数单位以及分数的大小比较来解决问题.
44.D
【分析】要把铁丝截成同样长的小段,不能有剩余,求每段铁丝最长的长度,就是在求24、36和48的最大公因数,先把三个数分解质因数,这三个数的公有的质因数的乘积就是它们的最大公因数,然后再用三条铁丝的长度和除以最大公因数即可求解段数。据此解答。
【详解】24=2×2×2×3
36=2×2×3×3
48=2×2×2×2×3
2×2×3=12
24、36和48的最大公因数是12,
(24+36+48)÷12
=108÷12
=9(段)
每段最多长12厘米,共可截9段。
故答案为:D
【点睛】本题考查的是最大公因数的应用,主要分析题目是求最大公因数还是最小公倍数。
45.B
【分析】一个分数的分母是几,它的分数单位就是几分之一;根据分数的基本性质,分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变,据此解答即可。
【详解】A.的分数单位是,的分数单位是,所以它们的分数单位不同,原题干说法错误;
B.=,所以和的大小相同,原题干说法正确;
C.表示把一个物体平均分成12份,取其中的8份;表示把一个物体平均分成3份,取其中的2份,所以它们的意义不同,原题干说法错误。
故答案为:B
【点睛】本题考查分数单位,明确分数单位的定义是解题的关键。
46.B
【分析】几个数公有的因数,叫做这几个数的公因数,其中最大的一个数叫做这几个数的最大公因数;最大公因数是这两个数的公有的质因数的乘积;据此解答。
【详解】根据分析,a=2×3×5,b=3×5×3
公有的质因数的乘积为:3×5=15,所以a和b的最大公因数是15;
故答案为:B
【点睛】此题关键掌握求两个数最大公因数的方法。
47.C
【分析】分子加上3后是原来的几倍,根据分数的基本性质,那么分母也是原来的几倍,分数的大小才不变。
【详解】(3+3)÷3
=6÷3
=2
10×2-10
=20-10
=10
则要使分数值不变,分母应乘2或加上10。
故答案为:C
【点睛】本题主要考查分数的基本性质,熟练运用分数的基本性质是解题的关键。
48.C
【详解】试题分析:把这些数分别同1相减,它拉的差最小的就和1最拉近.据此解答.
解:1﹣=,
1﹣1=,
1﹣,
1﹣=,
,所以和1最拉近.
故选C.
点评:本题的关键是分别求出它们的差,再比较.
49.C
【详解】试题分析:由题意可知:把2米看作单位“1”,则2米的为:2×=米;再把1米看作单位“1”,则1米的为:1×=米,从而可以比较出其大小.
解:因为2米的为:2×=米;
1米的为:1×=米,
所以2米的与1米的相等;
故选C.
点评:此题主要考查求一个数的几分之几是多少,用乘法计算,以及分数大小的比较方法.
50.A
【分析】由题意可知,用糖果的重量除以袋子的个数即可解答。
【详解】5÷8=(kg)
故答案为:A
【点睛】本题考查分数与除法的关系,明确它们之间的关系是解题的关键。