【精品课件】2015—2016山东省泰安市(满庄一中)八年级数学(人教版)课件:12.3《角的平分线的性质》课件(共26张PPT)

文档属性

名称 【精品课件】2015—2016山东省泰安市(满庄一中)八年级数学(人教版)课件:12.3《角的平分线的性质》课件(共26张PPT)
格式 zip
文件大小 1.6MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2015-09-23 07:14:33

图片预览

文档简介

课件26张PPT。角的平分线的性质 复习提问1、角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。复习提问 2、点到直线距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?你能由上面的探究得出作已知角的平分线的方法吗?探究1:E角的平分线的作法证明: 在△ACD和△ACB中
AD=AB(已知)
DC=BC(已知)
CA=CA(公共边)
∴ △ACD≌ △ACB(SSS)
∴∠CAD=∠CAB(全等三角形的
对应边相等)
∴AC平分∠DAB(角平分线的定义)
尺规作角的平分线ABO画法:  1.以O为圆心,适当长为半径作弧,交OA于M,交OB于N.  2.分别以M,N为圆心.大于 1/2 MN的长为半径作弧.两弧在∠AOB的内部交于C.3.作射线OC.射线OC即为所求.AB为什么OC是角平分线呢? O想一想:已知:OM=ON,MC=NC。
求证:OC平分∠AOB。证明:在△OMC和△ONC中,
OM=ON,
MC=NC,
OC=OC,
∴ △OMC≌ △ONC(SSS)
∴∠MOC=∠NOC
即:OC平分∠AOB
练习1:平分平角∠AOB。
归纳:“过直线上一点作这条直线的垂线”的方法。作已知角的平分线 将∠ AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论? 可以看一看,第一条折痕是∠AOB的平分线OC,第二次折叠形成的两条折痕PD,PE是角的平分线上一点到∠AOB两边的距离,这两个距离相等.折一折探究2角平分线的性质已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D,E。求证:PD=PE证明:∵ PD⊥OA,PE⊥OB(已知)
∴∠PDO=∠PEO=90(垂直的定义)在△PDO和△PEO中∴ PD=PE(全等三角形的对应边相等)∠ PDO= ∠ PEO ∠ AOC= ∠ BOC OP=OP∴ △ PDO≌ △ PEO(AAS)角的平分线上的点到这个角的两边的距离相等。证明几何命题的一般步骤:
1、明确命题的已知和求证
2、根据题意,画出图形,并用数学符号表示已知和求证;
3、经过分析,找出由已知推出求证的途径,写出证明过程。角平分线的性质定理:角的平分线上的点到角的两边的距离相等用符号语言表示为:AOBP12∵ ∠1= ∠2
PD ⊥OA ,PE ⊥OB
∴PD=PE
(角的平分线上的点到角的两边的距离相等)
推理的理由有三个,必须写完全,不能少了任何一个。角平分线的性质角的平分线上的点到角的两边的距离相等。定理应用所具备的条件:定理的作用: 证明线段相等。∵ 如图,AD平分∠BAC(已知) ∴ = ,( ) 在角的平分线上的点到这个角的两边的距离相等。
BD CD(×)判断:练习2∵ 如图, DC⊥AC,DB⊥AB (已知) ∴ = ,( ) 在角的平分线上的点到这个角的两边的距离相等。
BD CD(×)∵ AD平分∠BAC, DC⊥AC,DB⊥AB (已知)∴ = ,( ) 在角的平分线上的点到这个角的两边的距离相等。
√不必再证全等
练习3如图, ∵ OC是∠AOB的平分线,
又 ________________
∴PD=PE (
)PD⊥OA,PE⊥OB 角的平分线上的点
到角的两边的距离相等
在△OAB中,OE是它的角平分线,且EA=EB,EC、ED分别垂直OA,OB,垂足为C,D.
求证:AC=BD.例题讲解
练习4 在△ABC中, ∠ C=90 ° ,AD为∠BAC的平分线,DE⊥AB,BC=7,DE=3.
求BD的长。
如图,在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF; 求证:CF=EB巩固提高
◆这节课我们学习了哪些知识? 小 结1、“作已知角的平分线”的尺规作图法;2、角的平分线的性质: 111角的平分线上的点到角的两边的距离相等。
∵ OC是∠AOB的平分线,
又 PD⊥OA,PE⊥OB
∴ PD=PE (角的平分线上的点
到角的两边距离相等). 几何语言:,41 . 如图,DE⊥AB,DF⊥BC,垂足分别是E,F, DE =DF, ∠EDB= 60°,则 ∠EBF= 度,BE= 。60BF2 如图,在△ABC中,∠C=90°,DE⊥AB,∠1=∠2,且AC=6cm,那么线段BE是△ABC的    ,AE+DE=   。
角的平分线6cm练习3.已知△ABC中, ∠C=900,AD平分∠ CAB,且
BC=8,BD=5,求点D到AB的距离是多少?ABCDE你会吗?证明:过点P作PD 、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F
∵BM是△ABC的角平分线,点P在BM上
∴PD=PE
(在角平分线上的点到角的两边的距离相等)
同理 PE=PF.
∴ PD=PE=PF.
即点P到边AB、BC、 CA的距离相等
例 已知:如图,△ABC的角平分线BM、CN相交于点P. 求证:点P到三边AB、BC、CA的距离相等.ABCMNP怎样找三角形内到三角形三边距离相等的点?如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P.
求证:点P到三边AB,BC,CA所在直线的距离相等.ABCDEPFGHBP更上一层楼!