17.1 勾股定理 能力提高练习
一、单选题
1.如图所示,已知在中,平分,平分,且交于,若,则的值是( )
A.25 B.64 C.81 D.144
2.已知点M在y轴上,点,若线段的长为5,则点M的坐标为( )
A. B. C.或 D.或
3.勾股定理最早出现在《周髀算经》:“勾广三,股修四,弦隅五”,观察下列勾股数:,,;,,;,,;这类勾股数的特点如下:勾为奇数,弦与股相差,柏拉图研究了勾为偶数,弦与股相差的一类勾股数,如:,,;,,;若此类勾股数的勾为(,为正整数),则弦是(结果用含的式子表示)( )
A. B. C. D.
4.如图,在中,,以的各边为边作三个正方形,点落在上,若,空白部分面积为10,则的长为( )
A. B. C. D.
5.如图,的顶点A,B,C都在边长为1的小正方形网格的格点上,于点D,与网格线交于点F,取格点E,连接.对于四个说法:①,②,③,④点F在的平分线上,正确的有( )
A.1个 B.2个 C.3个 D.4个
6.将长方形纸片如图折叠,B,C两点恰好重合在边上的同一点P处折痕分别是,,若,,,分别记,,的面积为,,,则,,之间的数量关系是 ( )
A. B.
C. D.
7.在中,,,,的对边分别是a,b,c,若,,则的面积是( )
A. B. C. D.
8.如图,和都是等腰直角三角形,的顶点A在的斜边DE上.下列结论:其中正确的有( )
① ②
③ ④
A.1个 B.2个 C.3个 D.4个
9.赵爽是我国著名的数学家,“赵爽弦图”是他研究勾股定理的重要成果.古人有记载“勾三,股四,则弦五”的定理.如图,外围四个小长方形的宽相等,且邻长互相垂直,对长互相平行.若的长是小长方形宽的2倍,内部小正方形面积为9,则最外围的大正方形的边长是( )
A. B. C. D.
10.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为2的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是( )
A. B. C. D.
11.如图,长方形的边长为2,长为1,点A在数轴上对应的数是,以A点为圆心,对角线长为半径画弧,交数轴于点E,点E表示的实数是( )
A. B. C. D.
12.如图,从电线杆离地的处向地面处拉一条长的缆绳,则处到电线杆底部处的距离为( )
A. B. C. D.
13.如图,有一只喜鹊在一棵高的小树上觅食,它的巢筑在与该树水平距离()为的一棵高的大树上,喜鹊的巢位于树顶下方的处,当它听到巢中幼鸟的叫声,立即飞过去,如果它飞行的速度为,那么它要飞回巢中所需的时间至少是( )
A. B. C. D.
14.《九章算术》勾股章有一“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问:水深,葭长各几何.”意思是:如示意图,有一个水池,水面是一个边长为丈的正方形,在水池正中央有一根芦苇,它高出水面尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度和芦苇的长度分别是多少?备注:丈尺.设芦苇长尺,水的深度为尺,则可列方程为( )
A. B.
C. D.
15.如图,甲、乙两艘轮船同时从港口 出发,甲轮船以20海里/时的速度向南偏东 方向航行,乙轮船向南偏西 方向航行. 已知它们离开港口 2时后,两艘轮船相距60海里,则乙轮船的平均速度为 ( )
A.海里/时 B.20海里/时 C.海里/时 D.海里/时
二、填空题
16.如图,和都是等腰直角三角形,,D是BC上一点,连接CE.若,,则DE的长度为 .
17.在平面直角坐标系中,点是该平面内任意一点,连接,则的最小值是 .
18.一个直角三角形的边长都是整数,则称这种直角三角形为“完美勾股三角形”,k为其面积和周长的比值.当时,满足条件的“完美勾股三角形”的周长为 ;当时,若存在“完美勾股三角形”,则 .
19.如图,由两个直角三角形和三个正方形组成的图形.其中两正方形面积分别是,,,则的长为 .
20.已知在平面直角坐标系中的位置如图所示,将先向下平移5个单位长度,再向左平移2个单位长度.
(1)平移后点C的对应点的坐标为 ;(2)点A平移的距离为 .
21.如图,在直角坐标系中,的顶点A在轴上,顶点在轴上,,,点的坐标为,点和点关于成轴对称,且交轴于点.则点的坐标为
22.如图,一棵大树(树干与地面垂直)在一次强台风中于离地面5米的B处折断倒下,倒下后的树顶C与树根A的距离为12米,则这棵大树在折断前的高度为 米.
23.如图,河岸,互相平行,桥垂直于两岸,从处看桥的两端,,夹角,测得,则桥长 m(结果精确到).
24.如图,是台阶的模型图,已知每个台阶的宽度都是,每个台阶的高度都是,连接,则等于 .
25.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪处的正前方的处,过了后,测得小汽车与车速检测仪间的距离为,则这辆小汽车的速度是 .
26.如图,铁路和公路在点处交汇,,公路上处距离点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路上沿方向以72千米/小时的速度行驶时,处受到噪音影响的时间为 秒.
27.如图,商场(点M)距公路(直线l)的距离(MA)为3km,在公路上有一车站(点N),车站距商场(NM)为4km,公交公司拟在公路上建一个公交车站停靠站(点P),要求停靠站到商场与到车站的距离相等,则停靠站到车站的距离(NP)的长为 .
28.如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为 .
三、解答题
29.如图,在中,过点C作,在上截取,上截取,连接.
(1)求证:;
(2)若,求的面积.
30.如图,在中,,垂足为,,延长至,使得,连接.
(1)求证:;
(2)若,,求的周长和面积.
31.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即ab×4+(b-a)2,从而得到等式c2=ab×4+(b-a)2,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题:
(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.
(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.
32.例:截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.
(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.
解题思路:将△ABD绕点A逆时针旋转60°得到△ACE,可得AE=AD, CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则 ∠ACE+∠ACD=180°,易知△ADE是等边三角形,所以AD=DE,从而解决问题.
根据上述解题思路,三条线段DA、DB、DC之间的等量关系是___________;
(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.
参考答案:
1.C
2.D
3.A
4.A
5.D
6.C
7.A
8.D
9.D
10.B
11.B
12.C
13.C
14.B
15.D
16.
17.//
18. 或1
19.1
20.
21./
22.18
23.24
24.
25.
26.9
27.km
28.
29.【详解】(1)证明:∵
∴
又∵
∴;
(2)由(1),
∴,
设,∵,则,
在中,,
在中,,
∴,
即,整理得:,
解得:(舍去),
∴,
∴,,
∴.
30.(1)证明:,
,
在和中,,
,
;
(2),,
,
,
,
,
,
,
,
,
,
则的周长为,
的面积为.
31.(1)解:在Rt△ABC中,AB=,
由面积的两种算法可得:,
解得:CD=;
(2)在Rt△ABD中,,
在Rt△ADC中,,
所以,
解得:.
32.(1)结论:DA=DB+DC.
理由:∵△ABD绕点A逆时针旋转60°得到△ACE,
∴AE=AD, CE=BD,∠ABD=∠ACE,∠DAE=60°,
∵∠BAC+∠BDC=180°,
∴∠ABD+∠ACD=180°,
∴∠ACE+∠ACD=180°,
∴D,C,E三点共线,
∵AE=AD,∠DAE=60°,
∴△ADE是等边三角形,
∴AD=DE,
∴AD=DC+CE=DB+DC;
(2)结论:DA=DB+DC,
证明如下:
如图所示,延长DC到点E,使CE=BD,连接AE,
∵,,
∴,
∵,
∴=,
∵AB=AC,CE=BD,
∴(SAS),
∴AD=AE, ,
∴,
∴,
∴,
∴DA=DB+DC.