中小学教育资源及组卷应用平台
2024年贵州省统一命题初中学业水平考试数学三模仿真试卷八套
2024年贵州省数学三模专用卷(07)
全卷三个大题,共25题,满分150分.考试时间为120分钟.
一、选择题(每小题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)
1. -1/3的绝对值是( )
A. 3 B. C. D.
2. 一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )
A. B. C. D.
3. 芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计4积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为( )
A. B. C. D.
4. 如图,直线与直线都相交.若,则( )
A. B. C. D.
5. 若分式有意义,则x的取值范围是( )
A. B. C. D.
6. “石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是( )
包装 甲 乙 丙 丁
销售量(盒)
A. 中位数 B. 平均数 C. 众数 D. 方差
7. 5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为,腰长为,则底边上的高是( )
A. B. C. D.
8. 我市“神十五”航天员张陆和他的两位战友已于2023年6月4日回到地球家园,“神十六”的三位航天员已在中国空间站开始值守,空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱,假设“神十六”甲、乙、丙三名航天员从核心舱进入问天实验舱和梦天实验舱开展实验的机会均等,现在要从这三名航天员中选2人各进入一个实验舱开展科学实验,则甲、乙两人同时被选中的概率为( )
A. B. C. D.
9. 《九章算术》是我国古代数学的经典书,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等;交易其一,金轻十三两.问金、银一枚各重几何?”意思是甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可列方程组为( )
A. B.
C. D.
10. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的是( )
A.abc>0 B.函数的最大值为a﹣b+c
C.当﹣3≤x≤1时,y≥0 D.4a﹣2b+c<0
11. 如图,在中,分别以点A和点C为圆心,大于的长为半径作弧(弧所在圆的半径都相等),两弧相交于M,N两点,直线分别与边相交于点D,E,连接.若,则的长为( )
A. 9 B. 8 C. 7 D. 6
12. 如图,曲线表示一只蝴蝶在飞行过程中离地面高度随飞行时间的变化情况,则这只蝴蝶飞行的最高高度约为( )
A. B. C. D.
二、填空题(每小题4分,共16分)
13. 因式分解:__________.
14. 如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为和,那么第一架轰炸机C的平面坐标是_________。
15. 关于x的一元二次方程2x2+4mx+m=0有两个不同的实数根x1,x2,且,则m=_____.
16.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为 .
三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)
17.(10分) (1)计算:.
(2)解不等式:.
18. (10分)某校为了了解家长和学生观看安全教育视频的情况,随机抽取本校部分学生作调查,把收集的数据按照A,B,C,D四类(A表示仅学生参与;B表示家长和学生一起参与;C表示仅家长参与;D表示其他)进行统计,得到每一类的学生人数,并把统计结果绘制成如图所示的未完成的条形统计图和扇形统计图.
(1)在这次抽样调查中,共调查了多少名学生?
(2)补全条形统计图.
(3)已知该校共有1000名学生,估计B类的学生人数.
19.(10分)“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元;
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.
20. (10分)如图,四边形中,,,为对角线.
(1)证明:四边形是平行四边形.
(2)已知,请用无刻度的直尺和圆规作菱形,顶点E,F分别在边,上(保留作图痕迹,不要求写作法).
21.(10分)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形和菱形,点D,E在x轴上,以点O为圆心,长为半径作,连接.
(1)求k的值;
(2)求扇形的半径及圆心角的度数;
(3)请直接写出图中阴影部分面积之和.
22.(10分)某工程队准备从A到B修建一条隧道,测量员在直线AB的同一侧选定C,D两个观测点,如图.测得AC长为km,CD长为(+)km,BD长为km,∠ACD=60°,∠CDB=135°(A、B、C、D在同一水平面内).
(1)求A、D两点之间的距离;
(2)求隧道AB的长度.
23. (12分)如图,以线段为直径作,交射线于点C,平分交于点D,过点D作直线,交的延长线于点E,交的延长线于点F.连接并延长交的延长线于点M.
(1)求证:直线是的切线;
(2)当时,判断的形状,并说明理由;
(3)在(2)的条件下,,连接交于点P,求的长.
24. (12分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
25.(14分) (1)用数学的眼光观察.
如图,在四边形中,,是对角线的中点,是的中点,是的中点,求证:.
(2)用数学的思维思考.
如图,延长图中的线段交的延长线于点,延长线段交的延长线于点,求证:.
(3)用数学的语言表达.
如图,在中,,点在上,,是的中点,是的中点,连接并延长,与的延长线交于点,连接,若,试判断的形状,并进行证明.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024年贵州省统一命题初中学业水平考试数学三模仿真试卷八套
2024年贵州省数学三模专用卷(07)
全卷三个大题,共25题,满分150分.考试时间为120分钟.
一、选择题(每小题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)
1. -1/3的绝对值是( )
A. 3 B. C. D.
【答案】C
【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值,依据定义即可求解.
在数轴上,点到原点的距离是,
所以,的绝对值是,
故选:C.
【点睛】本题考查绝对值,掌握绝对值的定义是解题的关键.
2. 一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )
A. B. C. D.
【答案】A
【解析】根据几何体三视图的画法解答.
该几何体俯视图是 ,
故选:A.
【点睛】此题考查了判断几何体的三视图,正确掌握三视图的画法是解题的关键.
3. 芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计4积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为( )
A. B. C. D.
【答案】A
【解析】科学计数法的记数形式为:,其中,当数值绝对值大于1时,是小数点向右移动的位数;当数值绝对值小于1时,是小数点向左移动的位数的相反数.
,
故选A.
【点睛】本题考查科学计数法,掌握科学计数法的记数形式是解题的关键.
4. 如图,直线与直线都相交.若,则( )
A. B. C. D.
【答案】D
【解析】根据平行线的性质,对顶角相等,即可求解.
如图所示,
∵,
∴,
故选:D.
【点睛】本题考查了对顶角相等,平行线的性质,熟练掌握平行线的性质是解题的关键.
5. 若分式有意义,则x的取值范围是( )
A. B. C. D.
【答案】A
【解析】根据分式有意义条件可进行求解.
由题意得:,
∴;
故选A.
【点睛】本题主要考查分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.
6. “石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是( )
包装 甲 乙 丙 丁
销售量(盒)
A. 中位数 B. 平均数 C. 众数 D. 方差
【答案】C
【解析】根据众数的意义结合题意即可得到乙的销量最好,要多进即可得到答案.
由表格可得,
,众数是乙,
故乙的销量最好,要多进,
故选C.
【点睛】本题考查众数的意义,根据众数最多销量最好多进货.
7. 5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为,腰长为,则底边上的高是( )
A. B. C. D.
【答案】B
【解析】作于点D,根据等腰三角形的性质和三角形内角和定理可得
,再根据含30度角的直角三角形的性质即可得出答案.
如图,作于点D,
中,,,
,
,
,
故选B.
【点睛】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题的关键是掌握30度角所对的直角边等于斜边的一半.
8. 我市“神十五”航天员张陆和他的两位战友已于2023年6月4日回到地球家园,“神十六”的三位航天员已在中国空间站开始值守,空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱,假设“神十六”甲、乙、丙三名航天员从核心舱进入问天实验舱和梦天实验舱开展实验的机会均等,现在要从这三名航天员中选2人各进入一个实验舱开展科学实验,则甲、乙两人同时被选中的概率为( )
A. B. C. D.
【答案】B
【解析】用列表法表示出所有等可能得结果,然后利用概率公式求解即可.
甲 乙 丙
甲 (乙,甲) (丙,甲)
乙 (甲,乙) (丙,乙)
丙 (甲,丙) (乙,丙)
有表格可得,一共有6种等可能得结果,其中甲、乙两人同时被选中的结果有2种,
∴甲、乙两人同时被选中的概率为.
故选:B.
【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
9. 《九章算术》是我国古代数学的经典书,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等;交易其一,金轻十三两.问金、银一枚各重几何?”意思是甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可列方程组为( )
A. B.
C. D.
【答案】C
【解析】【分析】根据题意第一个等量关系为9枚黄金和11枚白银的重量相等列二元一次方程;再根据第二个等量关系为1枚黄金和10枚白银重量和比8枚黄金和1枚白银重量和大13列二元一次方程,即可得二元一次方程组.
【详解】解:设每枚黄金重x两,每枚白银重y两,根据题意得,
.
故选:C.
【点睛】本题考查二元一次方程组的实际应用,找出两个等量关系是列方程组的关键.
10. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的是( )
A.abc>0 B.函数的最大值为a﹣b+c
C.当﹣3≤x≤1时,y≥0 D.4a﹣2b+c<0
【答案】D
【解析】利用抛物线开口方向得到a<0,根据抛物线的对称性得到b=2a<0,根据抛物线与y轴的交点位置得到c>0,则可对A进行判断;利用二次函数的最值问题可对B进行判断;利用抛物线与x轴的交点与图像可对C进行判断;利用x=﹣2,y>0可对D进行判断.
∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=﹣=﹣4,
∴b=2a<0,
∵抛物线与y轴的交点坐标在x轴上方,
∴c>8,
∴abc>0,所以A不符合题意;
当x=﹣1时,函数的最大值为:a (﹣5)2+b (﹣1)+c=a﹣b+c,故B不符合题意;
由图可知,抛物线与x轴的另一交点为(﹣2,所以﹣3≤x≤1时,故C不符合题意;
当x=﹣5时,y>0,
所以,a (﹣2)6+b (﹣2)+c>0,
即2a﹣2b+c>0,故D符合题意.
11. 如图,在中,分别以点A和点C为圆心,大于的长为半径作弧(弧所在圆的半径都相等),两弧相交于M,N两点,直线分别与边相交于点D,E,连接.若,则的长为( )
A. 9 B. 8 C. 7 D. 6
【答案】D
【解析】由作图可知直线为边的垂直平分线,再由得到,则可知三点在以为圆心直径的圆上,进而得到,由勾股定理求出即可.
【详解】由作图可知,直线为边的垂直平分线,
∵
∴,
∵,
∴,
∴三点在以为圆心直径的圆上,
∴,
∵,
∴
∴.
故选:D.
【点睛】本题考查了线段垂直平分线尺规作图和性质,圆的基本性质和勾股定理,解答关键是熟练掌握常用尺规作图的作图痕迹,由作图过程得到新的结论.
12. 如图,曲线表示一只蝴蝶在飞行过程中离地面高度随飞行时间的变化情况,则这只蝴蝶飞行的最高高度约为( )
A. B. C. D.
【答案】D
【解析】根据函数图象可直接得出答案.
∵函数图象的纵坐标表示一只蝴蝶在飞行过程中离地面的高度,
∴由函数图象可知这只蝴蝶飞行的最高高度约为13m,
故选:D.
【点睛】本题考查了从函数图象获取信息的能力,准确识图是解题的关键.
二、填空题(每小题4分,共16分)
13. 因式分解:__________.
【答案】
【解析】=;
故答案为
14. 如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为和,那么第一架轰炸机C的平面坐标是_________。
【答案】(2,-1)
【解析】根据题意得,
如图所示,、,
原点如图所示,则,
15. 关于x的一元二次方程2x2+4mx+m=0有两个不同的实数根x1,x2,且,则m=_____.
【答案】
【解析】根据根与系数的关系得到x1+x2=-2m,x1x2=,再由x12+x22=变形得到(x1+x2)2-2x1x2=,即可得到4m2-m=,然后解此方程即可.
根据题意得x1+x2=-2m,x1x2=,
∵x12+x22=,
∴(x1+x2)2-2x1x2=,
∴4m2-m=,
∴m1=-,m2=,
∵Δ=16m2-8m>0,
∴m>或m<0时,
∴m=不合题意,
故答案为:.
【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,,.
16.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为 .
【答案】6.
【分析】现根据矩形的性质证明Rt△AFO≌Rt△BEO,然后求出∠BOE=60°,再解直角三角形即可.
【解答】解:∵四边形ABCD是矩形,
∴OA=OB=OC=OD,
∵OE⊥BC,
∴BE=CE,∠BOE=∠COE,
又∵BC=2AF,
∵AF=BE,
在Rt△AFO和Rt△BEO中,
,
∴Rt△AFO≌Rt△BEO(HL),
∴∠AOF=∠BOE,
∴∠AOF=∠BOE=∠COE,
又∵∠AOF+∠BOE+∠COE=180°,
∴∠BOE=60°,
∵OB=OD=6,
∴BE=OB sin60°=6×=3,
∴BC=2BE=6.
三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)
17.(10分) (1)计算:.
(2)解不等式:.
【答案】(1)1;(2)
【解析】【分析】(1)根据零指数幂的性质、二次根式的化简、绝对值的性质依次解答;
(2)先移项,再合并同类项,最后化系数为1即可解答.
【详解】(1)原式.
(2)移项得,
即,
∴.
∴原不等式解是.
【点睛】本题考查实数的混合运算、零指数幂、二次根式的化简和解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.
18. (10分)某校为了了解家长和学生观看安全教育视频的情况,随机抽取本校部分学生作调查,把收集的数据按照A,B,C,D四类(A表示仅学生参与;B表示家长和学生一起参与;C表示仅家长参与;D表示其他)进行统计,得到每一类的学生人数,并把统计结果绘制成如图所示的未完成的条形统计图和扇形统计图.
(1)在这次抽样调查中,共调查了多少名学生?
(2)补全条形统计图.
(3)已知该校共有1000名学生,估计B类的学生人数.
【答案】(1)200名 (2)见解析 (3)600名
【解析】【分析】(1)由A类别人数及其所占百分比可得总人数;
(2)先求出B类学生人数为:(名),再补画长形图即可;
(3)用该校学生总数1000乘以B类的学生所占百分比即可求解.
【详解】(1)解:(名),
答:这次抽样调查中,共调查了200名学生;
(2)解:B类学生人数为:(名),
补全条形统计图如图所示:
(3)解:(名),
答:估计B类的学生人数600名.
【点睛】本题考查样本容量,条形统计图,扇形统计图,用样本估计总体,从条形统计图与扇形统计图获取到有用信息是解题的关键.
19.(10分)“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元;
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.
【答案】(1) 2000元;(2) A型车20辆,B型车40辆.
【解析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同列出方程求解即可;
(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.
【详解】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得
,
解得:x=2000.
经检验,x=2000是原方程的根.
答:去年A型车每辆售价为2000元;
(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得
y=a+(60﹣a),
y=﹣300a+36000.
∵B型车进货数量不超过A型车数量的两倍,
∴60﹣a≤2a,
∴a≥20.
∵y=﹣300a+36000.
∴k=﹣300<0,
∴y随a的增大而减小.
∴a=20时,y最大=30000元.
∴B型车的数量为:60﹣20=40辆.
∴当新进A型车20辆,B型车40辆时,这批车获利最大.
【点拨】本题考查分式方程的应用;一元一次不等式的应用.
20. (10分)如图,四边形中,,,为对角线.
(1)证明:四边形是平行四边形.
(2)已知,请用无刻度的直尺和圆规作菱形,顶点E,F分别在边,上(保留作图痕迹,不要求写作法).
【答案】(1)见解析 (2)见解析
【解析】【分析】(1)先证明,
再证明,即,从而可得结论;
(2)作对角线的垂直平分线交于,交于,从而可得菱形.
【详解】(1)证明:∵,
∴,
∵,
∴,
即.
∴.
∴四边形是平行四边形.
(2)如图,
四边形就是所求作的菱形.
【点睛】本题考查的是平行四边形的判定与性质,作线段的垂直平分线,菱形的判定,熟练的利用菱形的判定进行作图是解本题的关键.
21.(10分)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形和菱形,点D,E在x轴上,以点O为圆心,长为半径作,连接.
(1)求k的值;
(2)求扇形的半径及圆心角的度数;
(3)请直接写出图中阴影部分面积之和.
【答案】(1) (2)半径为2,圆心角为 (3)
【解析】【分析】(1)将代入中即可求解;
(2)利用勾股定理求解边长,再利用三角函数求出的度数,最后结合菱形的性质求解;
(3)先计算出,再计算出扇形的面积,根据菱形的性质及结合的几何意义可求出,从而问题即可解答.
【详解】(1)将代入中,
得,
解得:;
(2)过点作的垂线,垂足为,如下图:
,
,
,
半径为2;
,
∴,
,
由菱形的性质知:,
,
扇形的圆心角的度数:;
(3),
,
,
如下图:由菱形知,,
,
,
.
【点睛】本题考查了反比例函数及的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握的几何意义.
22.(10分)某工程队准备从A到B修建一条隧道,测量员在直线AB的同一侧选定C,D两个观测点,如图.测得AC长为km,CD长为(+)km,BD长为km,∠ACD=60°,∠CDB=135°(A、B、C、D在同一水平面内).
(1)求A、D两点之间的距离;
(2)求隧道AB的长度.
【答案】见解析。
【解析】(1)过A作AE⊥CD于E,由含30°角的直角三角形的性质得CE=AC=(km),AE=CE=(km),再证AE=DE,即可求解;
(2)由(1)得AD=AE=(km),∠ADE=45°,再证∠ADB=90°,然后由勾股定理求解即可.
解:(1)过A作AE⊥CD于E,如图所示:
则∠AEC=∠AED=90°,
∵∠ACD=60°,
∴∠CAE=90°﹣60°=30°,
∴CE=AC=(km),AE=CE=(km),
∴DE=CD﹣CE=(+)﹣=(km),
∴AE=DE,
∴△ADE是等腰直角三角形,
∴AD=AE=×=(km);
(2)由(1)得:△ADE是等腰直角三角形,
∴AD=AE=(km),∠ADE=45°,
∵∠CDB=135°,
∴∠ADB=135°﹣45°=90°,
∴AB===3(km),
即隧道AB的长度为3km.
23. (12分)如图,以线段为直径作,交射线于点C,平分交于点D,过点D作直线,交的延长线于点E,交的延长线于点F.连接并延长交的延长线于点M.
(1)求证:直线是的切线;
(2)当时,判断的形状,并说明理由;
(3)在(2)的条件下,,连接交于点P,求的长.
【答案】(1)见解析 (2)是等边三角形,理由见解析
(3).
【解析】【分析】(1)证明,可推出,即可证明直线是的切线;
(2)证明,,得到,据此计算即可证明结论成立;
(3)利用含30度的直角三角形的性质求得,得到等边的边长,在中,利用余弦函数即可求解.
【详解】(1)证明:连接,
∵平分,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∵是的半径,
∴直线是的切线;
(2)解:是等边三角形,理由如下:
∵,,
∴,
∴,
∴,
∵为的直径,
∴,
∴,
∴,
∴是等边三角形;
(3)∵是等边三角形,
∴,则,
∵,
∴,
∴,
∵为的直径,,
∴,
∵,,即,
∴.
【点睛】此题考查了圆和三角形的综合题,切线的判定,直径所对的圆周角为直角,等腰三角形的性质和判定,解直角三角形等知识,解题的关键是熟练掌握以上知识点.
24. (12分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
【答案】(1) (2)2或6m
【解析】【分析】(1)根据顶点,设抛物线的表达式为,将点,代入即可求解;
(2)将代入(1)的解析式,求得的值,进而求与点的距离即可求解.
解:(1)根据题意可知抛物线的顶点为,
设抛物线的解析式为,
将点代入,得,
解得,
抛物线的解析式为,
(2)由,令,
得,
解得,
爸爸站在水柱正下方,且距喷水头P水平距离3m,
当她的头顶恰好接触到水柱时,她与爸爸的水平距离为(m),或(m).
【点睛】本题考查了二次函数的实际应用,掌握顶点式求二次函数解析式是解题的关键.
25.(14分) (1)用数学的眼光观察.
如图,在四边形中,,是对角线的中点,是的中点,是的中点,求证:.
(2)用数学的思维思考.
如图,延长图中的线段交的延长线于点,延长线段交的延长线于点,求证:.
(3)用数学的语言表达.
如图,在中,,点在上,,是的中点,是的中点,连接并延长,与的延长线交于点,连接,若,试判断的形状,并进行证明.
【答案】(1)见解析;(2)见解析;(3)是直角三角形,证明见解析.
【解析】【分析】(1)根据中位线定理即可求出,利用等腰三角形性质即可证明;
(2)根据中位线定理即可求出和,通过第(1)问的结果进行等量代换即可证明;
(3)根据中位线定理推出和
从而求出,证明是等边三角形,利用中点求出,从而求出度数,即可求证的形状.
【详解】证明:(1)中点,是的中点,
.
同理,.
,
.
.
(2)的中点,是的中点,
,
.
同理,.
由(1)可知,
.
(3)是直角三角形,证明如下:
如图,取的中点,连接,,
是的中点,
,.
同理,,.
,
.
.
,
,
.
,
.
又,
是等边三角形,
.
又,
.
,
.
是直角三角形.
故答案为:是直角三角形.
【点睛】本题考查了三角形的中位线定理,等腰三角形的性质,等边三角形的性质以及直角三角形的判定,解题的关键在于灵活运用中位线定理.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)