中小学教育资源及组卷应用平台
2024年贵州省统一命题初中学业水平考试数学三模仿真试卷八套
2024年贵州省数学三模专用卷(08)
全卷三个大题,共25题,满分150分.考试时间为120分钟.
一、选择题(每小题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)
1. 2023的倒数是( )
A. B. C. D.
2. 在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中,卯的俯视图是( )
A. B. C. D.
3. 大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为( )
A. B. C. D.
4. 如图,将一个含角的直角三角板按如图所示的位置摆放在直尺上.若,则的度数为( )
A. B. C. D.
5. 计算的结果为( )
A. B. C. D.
6. 在一次跳绳测试中,参与测试的10名学生一分钟跳绳成绩如下表所示:
成绩/次 129 130 132 135 137
人数/人 1 3 2 2 2
这10名学生跳绳成绩的中位数和众数分别为( )
A. 132,130 B. 132,132 C. 130,130 D. 130,132
7. 如图,是等边的边上的高,以点为圆心,长为半径作弧交的延长线于点,则( )
A. B. C. D.
8. 某校准备组织红色研学活动,需要从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐红色教育基地的概率是( )
A. B. C. D.
9. 《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为( )
A. B. C. D.
10. 如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )
A. B. 当时,的值随值的增大而增大
C. 点的坐标为 D.
11.如图,点在正方形的对角线上,于点,连接并延长,交边于点,交边的延长线于点.若,,则( )
A. B. C. D.
12. 第11届中国(湖南)矿物宝石国际博览会在我市举行,小方一家上午开车前往会展中心参观.途中汽车发生故障,原地修车花了一段时间.车修好后,他们继续开车赶往会展中心.以下是他们家出发后离家的距离与时间的函数图象.分析图中信息,下列说法正确的是( )
A. 途中修车花了
B. 修车之前的平均速度是/
C. 车修好后的平均速度是/
D. 车修好后的平均速度是修车之前的平均速度的倍
二、填空题(每小题4分,共16分)
13. 因式分解:3a2﹣9ab= .
14. 已知点,轴,且,则B点的坐标为______________.
15. 某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.
16.菱形ABCD中,AB=6,∠ABC=60°,以AD为边作等腰直角三角形ADF,∠DAF=90°,连接BF,BD,则△BDF的面积为 .
三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)
17.(10分)(1)计算|﹣|+(﹣)2﹣(+)2.
(2)解不等式组,并求出它的整数解.
18.(10分) 为了改进几何教学,张老师选择A,B两班进行教学实验研究,在实验班B实施新的教学方法,在控制班A采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2.
表1:前测数据
测试分数x
控制班A 28 9 9 3 1
实验班B 25 10 8 2 1
测试分数x
控制班A 14 16 12 6 2
实验班B 6 8 11 18 3
表2:后测数据
(1)A,B两班的学生人数分别是多少?
(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.
(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.
19.(10分)“六 一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
20. (10分)如图,在菱形中,对角线相交于点,点分别是边,线段上的点,连接与相交于点.
(1)如图1,连接.当时,试判断点是否在线段的垂直平分线上,并说明理由;
(2)如图2,若,且,
①求证:;
②当时,设,求的长(用含的代数式表示).
21. (10分)如图,点A在第一象限内,轴于点B,反比例函数的图象分别交于点C,D.已知点C的坐标为.
(1)求k的值及点D的坐标.
(2)已知点P在该反比例函数图象上,且在的内部(包括边界),直接写出点P的横坐标x的取值范围.
22. (10分)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼楼顶D处的俯角为,测得楼楼顶A处的俯角为.已知楼和楼之间的距离为100米,楼的高度为10米,从楼的A处测得楼的D处的仰角为(点A、B、C、D、P在同一平面内).
(1)填空:______度,______度;
(2)求楼的高度(结果保留根号);
(3)求此时无人机距离地面的高度.
23.(12分)如图,已知是等边三角形的外接圆,连接并延长交于点,交于点,连接,.
(1)写出图中一个度数为的角:_______,图中与全等的三角形是_______;
(2)求证:;
(3)连接,,判断四边形的形状,并说明理由.
24.(12分) 如图,二次函数的图象与x轴交于,两点,与y轴交于点C,顶点为D.O为坐标原点,.
(1)求二次函数的表达式;
(2)求四边形的面积;
(3)P是抛物线上的一点,且在第一象限内,若,求P点的坐标.
25. (14分)综合与实践
数学实践活动,是一种非常有效的学习方式.通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思推空间,丰富数学体验.让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.
折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.
(1)_______,写出图中两个等腰三角形:_______(不需要添加字母);
转一转:将图1中的绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.
(2)线段BP、PQ、DQ之间的数量关系为______;
(3)连接正方形对角线BD,若图2中的的边AP、AQ分别交对角线BD于点M、点N.如图3,则________;
剪一剪:将图3中的正方形纸片沿对角线BD剪开,如图4.
(4)求证:.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024年贵州省统一命题初中学业水平考试数学三模仿真试卷八套
2024年贵州省数学三模专用卷(08)
全卷三个大题,共25题,满分150分.考试时间为120分钟.
一、选择题(每小题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)
1. 2023的倒数是( )
A. B. C. D.
【答案】C
【解析】直接利用倒数的定义,即若两个不为零的数的积为1,则这两个数互为倒数,即可一一判定.
的倒数为.
故选C.
【点睛】此题主要考查了倒数的定义,熟练掌握和运用倒数的求法是解决本题的关键.
2. 在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中,卯的俯视图是( )
A. B. C. D.
【答案】C
【解析】根据俯视图的定义(从上面观察物体所得到的视图是俯视图)即可得.
卯的俯视图是 ,
故选:C.
【点睛】本题考查了俯视图,熟记俯视图的概念是解题关键.
3. 大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为( )
A. B. C. D.
【答案】A
【解析】科学记数法的表现形式为的形式,其中,为整数,确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,是非负数,当原数绝对值小于1时,是负数.
【详解】解:数字1268000000用科学记数法表示为:,
故选:A.
【点睛】本题考查了科学记数法的表示方法,科学记数法的表现形式为的形式,其中,为整数,表示时关键是要正确确定的值以及的值.
4. 如图,将一个含角的直角三角板按如图所示的位置摆放在直尺上.若,则的度数为( )
A. B. C. D.
【答案】C
【解析】由平角的定义可得,由平行线的性质可得.
如图,
∵,
∴.
∵直尺的对边平行,
∴,
故选:C.
【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
5. 计算的结果为( )
A. B. C. D.
【答案】C
【解析】根据分式的加法运算可进行求解.
原式;
故选C.
【点睛】本题主要考查分式的运算,熟练掌握分式的运算是解题的关键.
6. 在一次跳绳测试中,参与测试的10名学生一分钟跳绳成绩如下表所示:
成绩/次 129 130 132 135 137
人数/人 1 3 2 2 2
这10名学生跳绳成绩的中位数和众数分别为( )
A. 132,130 B. 132,132 C. 130,130 D. 130,132
【答案】A
【解析】中位数:是指将所有数从小到大或从大到小排列后,如果总数为奇数个,中位数就是排在最中间的那个数;如果总数为偶数个,中位数就是排在最中间的两个数的平均数;众数∶一组数据中,出现次数最多的数据.根据定义即可求解.
【详解】这组数据的中位数为,
这组数据中130出现次数最多,则众数为130,
故选:A.
【点睛】本题考查中位数、众数,熟知中位数、众数的计算方法,数据较大,正确计算是解答的关键.
7. 如图,是等边的边上的高,以点为圆心,长为半径作弧交的延长线于点,则( )
A. B. C. D.
【答案】C
【解析】由等边三角形的性质求解,再利用等腰三角形的性质可得,从而可得答案.
【详解】∵是等边的边上的高,
∴,
∵,
∴,
故选C
【点睛】本题考查的是等边三角形的性质,等腰三角形的性质,熟记等边三角形与等腰三角形的性质是解本题的关键.
8. 某校准备组织红色研学活动,需要从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐红色教育基地的概率是( )
A. B. C. D.
【答案】B
【解析】直接根据概率公式求解即可.
从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,总共有4种选择,
选中梅岐红色教育基地有1种,则概率为,
故选:B
【点睛】此题考查了概率的求法,通过所有可能结果得出,再从中选出符合事件结果的数目,然后根据概率公式求出事件概率.
9. 《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为( )
A. B. C. D.
【答案】A
【解析】设总路程为1,野鸭每天飞,大雁每天飞,当相遇的时候,根据野鸭的路程+大雁的路程=总路程即可得出答案.
设经过x天相遇,
根据题意得:x+x=1,
∴(+)x=1.
【点睛】本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.
10. 如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )
A. B. 当时,的值随值的增大而增大
C. 点的坐标为 D.
【答案】D
【解析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.
A.根据图像可知抛物线开口向下,即,故该选项不符合题意;
B.根据图像开口向下,对称轴为,当,随的增大而减小;当,随的增大而增大,故当时,随的增大而增大;当,随的增大而减小,故该选项不符合题意;
C.根据二次函数的图像与轴相交于,两点,对称轴是直线,可得对称轴,解得,即,故该选项不符合题意;
D.根据可知,当时,,故该选项符合题意.
【点睛】本题考查二次函数的图像与性质,根据图像得到抛物线开口向下,根据对称轴以及抛物线与轴交点得到是解决问题的关键.
11.如图,点在正方形的对角线上,于点,连接并延长,交边于点,交边的延长线于点.若,,则( )
A. B. C. D.
【答案】B
【解析】【分析】根据平行线分线段成比例得出,根据,得出,则,进而可得,根据,得出,根据相似三角形的性质得出,进而在中,勾股定理即可求解.
【详解】∵四边形是正方形,,,
∴,,,
∵,
∴
∴,,
∴,
则,
∴,
∵,
∴,
∴
∴,
在中,,
故选:B.
【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.
12. 第11届中国(湖南)矿物宝石国际博览会在我市举行,小方一家上午开车前往会展中心参观.途中汽车发生故障,原地修车花了一段时间.车修好后,他们继续开车赶往会展中心.以下是他们家出发后离家的距离与时间的函数图象.分析图中信息,下列说法正确的是( )
A. 途中修车花了
B. 修车之前的平均速度是/
C. 车修好后的平均速度是/
D. 车修好后的平均速度是修车之前的平均速度的倍
【答案】D
【解析】根据图象信息以及速度路程÷时间的关系即可解决问题.
由图象可知途中修车花了,
修车之前的平均速度是÷/,
车修好后的平均速度是÷/,
∴
故A、B、C错误,D正确.
故选∶ D.
【点睛】本题考查了函数图象,观察函数图象得出相应的时间和路程是解题关键.
二、填空题(每小题4分,共16分)
13. 因式分解:3a2﹣9ab= .
【答案】3a(a﹣3b).
【解析】提取公因式,即可得出答案.
3a2﹣9ab=3a(a﹣3b)
14. 已知点,轴,且,则B点的坐标为______________.
【答案】或
【解析】,轴,
点B的横坐标为6,
,
点B的纵坐标为或,
B点的坐标为或.
故答案为:或.
15. 某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.
【答案】20%
【解析】根据该公司5、6两个月营业额的月均增长率为x结合5月、7月营业额即可得出关于x的一元二次方程,解此方程即可得解.
设该公司5、6两个月营业额的月均增长率为x,根据题意得,
解得,(舍去)
所以,增长率为20%
【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x的一元二次方程是解题的关键.
16.菱形ABCD中,AB=6,∠ABC=60°,以AD为边作等腰直角三角形ADF,∠DAF=90°,连接BF,BD,则△BDF的面积为 .
【答案】27+9或27﹣9.
【解析】分AF在AD上方还是下方两种情况,若AF在上方,则有S△BDF=S△ABD+S△ABF+S△ADF,若AF在下方,则有S△BDF=S△ABF+S△ADF﹣S△ABD,分别求出这三部分面积即可.
解:当AF在AD上方时,如图,延长FA交BC于E,
∵AB=6,∠ABC=60°,
∴BE=3,AE=3,
S菱形ABCD=BC×AE=6×=18,
∴S△ABD==9,
S△ABF=,
S△ADF=,
∴S△BDF=S△ABD+S△ABF+S△ADF=9,
当AF在AD下方时,如图,
则S△BDF=S△ABF+S△ADF﹣S△ABD=27﹣9,
故答案为:27+9或27﹣9.
三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)
17.(10分)(1)计算|﹣|+(﹣)2﹣(+)2.
【答案】﹣.
【解析】分别运用绝对值的性质和乘法公式展开再合并即可.
原式=+[() ﹣+]﹣[() ++],
=+(2﹣+)﹣(2++),
=+2﹣+﹣2﹣﹣,
=﹣.
(2)解不等式组,并求出它的整数解.
【答案】0、1.
【解析】解不等式x+1>0,得:x>﹣1,
解不等式x+4>3x,得:x<2,
则不等式组的解集为﹣1<x<2,
所以不等式组的整数解为0、1.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
18.(10分) 为了改进几何教学,张老师选择A,B两班进行教学实验研究,在实验班B实施新的教学方法,在控制班A采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2.
表1:前测数据
测试分数x
控制班A 28 9 9 3 1
实验班B 25 10 8 2 1
测试分数x
控制班A 14 16 12 6 2
实验班B 6 8 11 18 3
表2:后测数据
(1)A,B两班的学生人数分别是多少?
(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.
(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.
【答案】(1)A,B两班的学生人数分别是50人,46人
(2)见解析 (3)见解析
【解析】【分析】(1)由统计表中的数据个数之和可得两个班的总人数;
(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可;
(3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.
【详解】(1)A班的人数:(人)
B班的人数:(人)
答:A,B两班的学生人数分别是50人,46人.
(2)
,
,
从平均数看,B班成绩好于A班成绩.
从中位数看,A班中位数在这一范围,B班中位数在这一范围,B班成绩好于A班成绩.
从百分率看,A班15分以上的人数占16%,B班15分以上的人数约占46%,B班成绩好于A班成绩.
(3)前测结果中:
从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.
从中位数看,两班前测中位数均在这一范围,后测A班中位数在这一范围,B班中位数在这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.
从百分率看,A班15分以上的人数增加了100%,B班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.
【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.
19.(10分)“六 一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
【答案】见解析
【解析】(1)设第一批玩具每套的进价是x元,则第一批进的件数是:,第二批进的
件数是:,再根据等量关系:第二批进的件数=第一批进的件数×1.5可得方程;
(2)设每套售价是y元,利润=售价﹣进价,根据这两批玩具每套售价相同,且全部售完后总利润不低于25%,可列不等式求解.
解:(1)设第一批玩具每套的进价是x元,
×1.5=,
x=50,
经检验x=50是分式方程的解,符合题意.
答:第一批玩具每套的进价是50元;
(2)设每套售价是y元,
×1.5=75(套).
50y+75y﹣2500﹣4500≥(2500+4500)×25%,
y≥70,
答:如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是70元.
20. (10分)如图,在菱形中,对角线相交于点,点分别是边,线段上的点,连接与相交于点.
(1)如图1,连接.当时,试判断点是否在线段的垂直平分线上,并说明理由;
(2)如图2,若,且,
①求证:;
②当时,设,求的长(用含的代数式表示).
【答案】(1)点在线段的垂直平分线上
(2)①证明见解析,②
【解析】【分析】(1)根据菱形的性质及垂直平分线的判定证明即可;
(2)①根据菱形的性质得出,再由各角之间的关系得出,由含30度角的直角三角形的性质求解即可;③连接.利用等边三角形的判定和性质得出,再由正切函数及全等三角形的判定和性质及勾股定理求解即可.
【详解】
(1)解:如图,点在线段的垂直平分线上.
理由如下:连接.
∵四边形是菱形,对角线相交于点,
.
,
,
∴点在线段的垂直平分线上.
(2)①证明:如图,∵四边形是菱形,
,
,,
,
,
.
,
.
,
,
,
.
在中,,
.
.
,
;
②如图,连接.
,
∴是等边三角形.
∵,
∴,
在中,,
,
.
,,
,
.
,
,
.
在中,,
由勾股定理得,
.
【点睛】题目主要考查菱形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质及解直角三角形,理解题意,综合运用这些知识点是解题关键.
21. (10分)如图,点A在第一象限内,轴于点B,反比例函数的图象分别交于点C,D.已知点C的坐标为.
(1)求k的值及点D的坐标.
(2)已知点P在该反比例函数图象上,且在的内部(包括边界),直接写出点P的横坐标x的取值范围.
【答案】(1),; (2);
【解析】【分析】(1)由C点坐标可得k,再由D点纵坐标可得D点横坐标;
(2)由C、D两点的横坐标即可求得P点横坐标取值范围;
【小问1详解】
解:把C(2,2)代入,得,,
∴反比例函数函数为(x>0),
∵AB⊥x轴,BD=1,
∴D点纵坐标为1,
把代入,得,
∴点D坐标为(4,1);
【小问2详解】
解:∵P点在点C(2,2)和点D(4,1)之间,
∴点P的横坐标:;
【点睛】本题考查了反比例函数解析式,坐标的特征,数形结合是解题关键.
22. (10分)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼楼顶D处的俯角为,测得楼楼顶A处的俯角为.已知楼和楼之间的距离为100米,楼的高度为10米,从楼的A处测得楼的D处的仰角为(点A、B、C、D、P在同一平面内).
(1)填空:______度,______度;
(2)求楼的高度(结果保留根号);
(3)求此时无人机距离地面的高度.
【答案】(1)75;60 (2)米 (3)110米
【解析】【分析】(1)根据平角定义求,过点A作于点E,再利用三角形内角和求;
(2)在中,求出DE的长度再根据计算即可;
(3)作于点G,交于点F,证明即可.
【详解】(1)过点A作于点E,
由题意得:
∴
(2)由题意得:米,.
在中,,
∴,
∴
∴楼的高度为米.
(3)作于点G,交于点F,
则
∵,
∴.
∵,
∴.
∵,
∴.
∵,
∴.
∴.
∴.
∴(AAS).
∴.
∴
∴无人机距离地面的高度为110米.
【点睛】此题考查了解直角三角形的应用-仰角俯角问题的知识.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.
23.(12分)如图,已知是等边三角形的外接圆,连接并延长交于点,交于点,连接,.
(1)写出图中一个度数为的角:_______,图中与全等的三角形是_______;
(2)求证:;
(3)连接,,判断四边形的形状,并说明理由.
【答案】(1)、、、;;
(2)证明见详解; (3)四边形是菱形;
【解析】【分析】(1)根据外接圆得到是的角平分线,即可得到的角,根据垂径定理得到,即可得到答案;
(2)根据(1)得到,根据垂径定理得到,即可得到证明;
(3)连接,,结合得到 ,是等边三角形,从而得到,即可得到证明;
【详解】(1)∵是等边三角形的外接圆,
∴是的角平分线,,
∴,
∵是的直径,
∴,
∴,
∴的角有:、、、,
∵是的角平分线,
∴,,
在与中,
∵,
∴,
故答案为:、、、,;
(2)证明:∵,,
∴;
(3)连接,,
∵,,
∴ ,是等边三角形,
∴,
∴四边形是菱形.
【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.
24.(12分) 如图,二次函数的图象与x轴交于,两点,与y轴交于点C,顶点为D.O为坐标原点,.
(1)求二次函数的表达式;
(2)求四边形的面积;
(3)P是抛物线上的一点,且在第一象限内,若,求P点的坐标.
【答案】(1) (2)30 (3)
【解析】【分析】(1)用两点式设出二次函数的解析式,然后求得C点的坐标,并将其代入二次函数的解析式,求得a的值,再将a代入解析式中即可.
(2)先将二次函数变形为顶点式,求得顶点坐标,然后利用矩形、三角形的面积公式即可求得答案.
(3)根据各点的坐标的关系及同角三角函数相等的结论可以求得相关联的函数解析式,最后联立一次函数与二次函数的解析式,求得点P的坐标.
【详解】(1)∵二次函数的图象与轴交于两点.
∴设二次函数的表达式为
∵,
∴,即的坐标为
则,得
∴二次函数的表达式为;
(2)
∴顶点坐标为
过作于,作于,
四边形的面积
;
(3)如图,是抛物线上的一点,且在第一象限,当时,
连接,过作交于,过作于,
∵,则为等腰直角三角形,.
由勾股定理得:,
∵,
∴,
即,
∴
由,得,
∴.
∴是等腰直角三角形
∴
∴的坐标为
所以过的直线的解析式为
令
解得,或
所以直线与抛物线的两个交点为
即所求的坐标为
【点睛】本题考查了一次函数、二次函数的性质以及与坐标系几何图形的综合证明计算问题,解题的关键是将所学的知识灵活运用.
25. (14分)综合与实践
数学实践活动,是一种非常有效的学习方式.通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思推空间,丰富数学体验.让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.
折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.
(1)_______,写出图中两个等腰三角形:_______(不需要添加字母);
转一转:将图1中的绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.
(2)线段BP、PQ、DQ之间的数量关系为______;
(3)连接正方形对角线BD,若图2中的的边AP、AQ分别交对角线BD于点M、点N.如图3,则________;
剪一剪:将图3中的正方形纸片沿对角线BD剪开,如图4.
(4)求证:.
【答案】(1)45,,;(2);(3);(4)见解析
【解析】(1)由翻折的性质可知:,,根据正方形的性质:, ,则,为等腰三角形;
(2)如图:将顺时针旋转,证明全等,即可得出结论;
(3)证明即可得出结论;
(4)根据半角模型,将顺时针旋转,连接,可得,通过得出,为直角三角形,结合勾股定理即可得出结论.
【详解】(1)由翻折的性质可知:
为正方形
,
为等腰三角形
(2)如图:将顺时针旋转,
由旋转的性质可得:,
由(1)中结论可得
为正方形,
在和中
(3)为正方形对角线
,
,
(4)如图:将顺时针旋转,连接,
由(2)中的结论可证
根据旋转的性质可得:,
在中有
【点睛】本题是四边形的综合题,考查了正方形的性质,折叠的性质,旋转变换的性质,全等三角形的判定和性质,以及相似三角形的判定和性质,勾股定理等知识,能够综合运用这些性质是解题关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)