云南省玉溪市重点中学2023-2024学年高二下学期第一次月考数学试卷(含答案)

文档属性

名称 云南省玉溪市重点中学2023-2024学年高二下学期第一次月考数学试卷(含答案)
格式 zip
文件大小 515.0KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2024-03-29 09:41:51

文档简介

玉溪市重点中学2023-2024学年高二下学期第一次月考
数学试卷
总分150分,考试时间120分钟
一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的。
1. 已知是的导数,,在处取到极值,则是的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2. 已知集合,,则
A. B. C. D.
3. 下列求导运算正确的是
A. B.
C. D.
4. 已知为等比数列,若,则
A.4 B. C. D.
5. 设,,,则,,大小关系正确的是
A. B. C. D.
6. 抛物线的焦点坐标为
A. B. C. D.
7. 已知向量,向量,满足,则
A. B. C. D.
8. 已知双曲线的左、右焦点分别为,,直线与相交于,两点,若四边形是矩形,则双曲线的离心率
A. B. C. D.
二、多选题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。
9.如图,在直三棱柱中,D,G,E分别为所在棱的中点,,三棱柱挖去两个三棱锥,后所得的几何体记为,则

A.有7个面 B.有13条棱
C.有7个顶点 D.平面平面
10.已知无穷等差数列的前项和为,,,则
A.在数列中,最大 B.在数列中,或最大
C. D.当时,
11.如图,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复上述操作(其中),得到四个小正方形,记它们的面积分别为,则以下结论正确的是
A.
B.
C.
D.
三、填空题:本题共3小题,每小题5分,共15分。
12. 若直线过点,则的最小值为________.
13. 已知,,,则的值为_______.
14. 已知函数,若函数恰好有两个零点,则实数等于________.
三、解答题:共77分.解答应写出文字说明、证明过程或演算步骤
15.(13分)
已知在中,三边所对的角分别为,已知.
(1)求;
(2)若外接圆的直径为4,求的面积.
16.(15分)
在圆锥PO中,高,母线,B为底面圆O上异于A的任意一点.
若,过底面圆心O作所在平面的垂线,垂足为H,
求证:平面OHB;
(2)若,求二面角的余弦值.
17.(15分)
已知是等差数列的前项和,且.
(1)求数列的通项公式;
(2)若对任意,求的最小整数值.
18.(17分)
已知函数.
(1)讨论函数的单调区间;
(2)当时,设,若恒成立,求的取值范围.
19.(17分)
已知椭圆的右焦点为,且经过点,过点且不与轴重合的直线交椭圆于,两点.
(1)求椭圆C的标准方程;
(2)设椭圆的左顶点为,直线,和直线分别交于点,,记直线,的斜率分别为,,求证:为定值.
试卷第2页,总4页玉溪市重点中学2023-2024学年高二下学期第一次月考
数学参考答案
单择题 BCCBC ADD
多选题 ABD ACD BC
三、填空题 8
10.ACD
【详解】设等差数列的公差为,由可得:,又由 可得:,即,故数列单调递减,最大,即A项正确,B项错误;
对于C项,由,由A项可知故,故C项正确;
对于D项,由上分析知,则,故,因,,故有,即D项正确.
故选:ACD.
11.BC
【详解】设,最大正方形的边长为1,
小正方形的边长分别为.∵,


,,
所以C正确;

所以,所以B正确,
故选:BC.
14.
15.(1); (2)
【详解】(1)因为,
因为.
所以,········································(3分)
又,则,因为,所以.····································(6分)
(2)由正弦定理,,则,········································(8分)
由余弦定理,,
解得或(舍去),········································(11分)
故的面积.········································(13分)
16.(1)证明见解析; (2)
【详解】(1)证明:因为PO为圆锥的高,所以.
又,所以平面POA.
因为平面POA,所以.········································(3分)
因为平面PAB,又平面PAB,所以,···································(6分)
又因为,所以平面OHB.········································(7分)
(2)如图,以O原点,OA为x轴,OP为z轴建立空间直角坐标系,
得,
所以.····························(9分)
设平面PAB的一个法向量为,则
.则可取.········································(12分)
而平面POA的一个法向量为,········································(13分)
所以.
故所求二面角的余弦值为.········································(15分)
17.(1) ; (2)1
【详解】(1)因为
所以,解得.········································(6分)
所以.········································(7分)
(2)因为,所以,
令,
所以,········································(9分)
两式相减得,·············(12分)
所以.········································(13分)
因为,所以,
所以,故的最小整数值为1.········································(15分)
18.(1)见解析; (2)
【详解】(1)定义域为,
········································(2分)
①时,恒成立,在上单调递减·····················(4分)
②时,
+
单调递减 单调递增
····················································(7分)
(2)恒成立
所以恒成立·······································(8分)

则····················(11分)
设,则,·······································(13分)
当时,递增,
当时,递减,
所以·······································(15分)
所以当时,恒成立,
当时,递增,
当时,递减,
所以·······································(16分)
由恒成立得,
所以的取值范围为.·······································(17分)
19.(1); (2)证明见解析.
【详解】(1)(1)由题意得,解得,··························(4分)
故椭圆的标准方程为.·······································(5分)
(2)由(1)知,,设,直线的方程为,············(6分)
由消去得,··························(7分)
则,·······································(8分)
直线的方程为,·······································(9分)
由,得,·······································(11分)
同理,·······································(12分)


所以为定值.·······································(17分)
同课章节目录