2.2探索直线平行的条件(第1课时)
教学目标:
1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力。
2、会认由三线八角所成的同位角
3、经历探索直线平行的条件的过程,掌握直线平行的条件,
并能解决一些问题
教学重点:会认各种图形下的同位角,并掌握直线平行的条件
是“同位角相等,两直线平行”
教学难点:判断两直线平行的说理过程
教学方法:实践法
教学用具:几何画板课件、三角板、活动木条
活动准备:学生预先做好三根活动木条
教学过程:
课前复习:
(1)在同一平面内,两条直线的位置关系是
(2)在同一平面内, 两条直线的是平行线
创设情景:
如书中彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?
新课:
学生动手操作移动活动木条,完成书中的做一做内容。
改变图中∠1的大小,按照上面的方式再做一做,∠1与∠2的大小满足什么关系时,木条a与木条b平行?小组内交流。
由∠1与∠2的位置引出同位角的概念,如图
∠1与∠2、∠5与∠6、∠7与∠8、∠3与∠4等都是同位角
练习:如图,哪些是同位角?
4、几何画板动画演示两直线平行的条件——同位角相等
5、例:找出下图中互相平行的直线,并说明理由。
6、完成第55页随堂练习1、2题
小结:本节课学习了两直线平行的条件是同位角相等。
要特别注意数形结合。
作业:第55页习题1、2题
教后记:学生基本会找同位角,也能找出平行的直线 ,但说理方面欠条理性。
2.2探索直线平行的条件(第2课时)
教学目标:1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题。
3、会用三角尺过已知直线外一点画这条直线的平行线。
教学重点:弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
教学难点:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
教学方法:观察讨论、归纳总结。
教学工具:课件,投影仪。
准备活动:
1、如图,a∥b,数一数图中有几个角(不含平角)
2、写出图中的所有同位角。
教学过程:
引入:
小明有一块小画板,他想知道它的上下边缘是否平行,
于是他在两个边缘之间画了一条线段AB(如图所示)。他
只有一个量角器,他通过测量某些角的大小就能知道这个
画板的上下边缘是否平行,你知道他是怎样做的吗?
定义:1、内错角;2、同旁内角。
探索练习:
观察课件中的三线八角,内错角的变化和同旁内角的变化,讨论:
(1)内错角满足什么关系时,两直线平行?为什么?
(2)同旁内角满足什么关系时,两直线平行?为什么?
★结论:内错角相等,两直线平行。
同旁内角互补,两直线平行。
巩固练习:
1、如右图,∵∠1=∠2
∴ ∥ ,
∵∠2=
∴ ∥ ,同位角相等,两直线平行
∵∠3+∠4=180°
∴ ∥ ,
∴AC∥FG,
2、如右图,∵DE∥BC
∴∠2= ,
∴∠B+ =180°,
∵∠B=∠4
∴ ∥ ,
∴ + =180°,两直线平行,同旁内角互补
小 结:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
作 业: 课本P58习题2.3:1、2、3。
教学后记:初步了解内错角和同旁内角,但在 ( http: / / www.21cnjy.com )三线八角图中,找同位角、内错角、同旁内角就有些混乱,不过能通过观察内错角、同旁内角度数的变化发现“内错角相等,两直线平行和同旁内角互补,两直线平行”。在实际应用中比较乱,出现“同旁内角相等,两直线平行”的错误。
A
B