2021年-2023年高考真题汇编——一元函数的导数及其应用(含答案)

文档属性

名称 2021年-2023年高考真题汇编——一元函数的导数及其应用(含答案)
格式 zip
文件大小 2.9MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-04-03 15:25:53

文档简介

中小学教育资源及组卷应用平台
一元函数的导数及其应用
【2023年】
1.(新课标全国Ⅰ卷)已知函数.
(1)讨论的单调性;
(2)证明:当时,.
2.(新课标全国Ⅱ卷)已知函数在区间上单调递增,则a的最小值为( ).
A. B.e C. D.
3.(新课标全国Ⅱ卷)若函数既有极大值也有极小值,则( ).
A. B. C. D.
4.(新课标全国Ⅱ卷)(1)证明:当时,;
(2)已知函数,若是的极大值点,求a的取值范围.
5.(全国乙卷数学(文))函数存在3个零点,则的取值范围是( )
A. B. C. D.
(全国乙卷数学(文))6.已知函数.
(1)当时,求曲线在点处的切线方程.
(2)若函数在单调递增,求的取值范围.
7.(全国乙卷数学(理))设,若函数在上单调递增,则a的取值范围是______.
8.(全国乙卷数学(理))已知函数.
(1)当时,求曲线在点处的切线方程;
(2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.
(3)若在存在极值,求a的取值范围.
9.(全国甲卷数学(文))曲线在点处的切线方程为( )
A. B. C. D.
10.(全国甲卷数学(文))已知函数.
(1)当时,讨论的单调性;
(2)若,求的取值范围.
11.(全国甲卷数学(文))已知
(1)若,讨论的单调性;
(2)若恒成立,求a的取值范围.
12.(2023天津卷)已知函数.
(1)求曲线在处切线的斜率;
(2)当时,证明:;
(3)证明:.
.
13.(2023·北京·统考高考真题)设函数,曲线在点处的切线方程为.
(1)求的值;
(2)设函数,求的单调区间;
(3)求的极值点个数.
【2022年】
1.(2022年全国高考甲卷数学(理)试题) 当时,函数取得最大值,则( )
A. B. C. D. 1
2. (2022年全国高考乙卷数学(文)试题) 函数在区间的最小值、最大值分别为( )
A. B.
C. D.
3. (2022年新全国高考1卷数学试题)设,则( )
A. B. C. D.
4. (2022年新全国高考1卷数学试题)已知函数,则( )
A. 有两个极值点 B. 有三个零点
C. 点是曲线的对称中心 D. 直线是曲线的切线
5.(2022年新全国高考1卷数学试题) 已知函数及其导函数的定义域均为,记,若,均为偶函数,则( )
A. B. C. D.
6.(2022年新全国高考1卷数学试题) 若曲线有两条过坐标原点的切线,则a的取值范围是________________.
7. (2022年新全国高考Ⅱ卷数学试题)曲线过坐标原点的两条切线的方程为____________,____________.
8. (2022年全国高考乙卷数学(理)试题)已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________.
9. (2022年全国高考乙卷数学(文)试题)已知函数.
(1)当时,求的最大值;
(2)若恰有一个零点,求a的取值范围.
10. (2022年全国高考甲卷数学(理)试题)已知函数.
(1)若,求a的取值范围;
(2)证明:若有两个零点,则.
11. (2022年全国高考甲卷数学(文)试题)已知函数,曲线在点处的切线也是曲线的切线.
(1)若,求a;
(2)求a的取值范围.
12. (2022年全国高考乙卷数学(理)试题)已知函数
(1)当时,求曲线在点处的切线方程;
(2)若在区间各恰有一个零点,求a的取值范围.
13.(2022年全国新高考北京试题) 已知函数.
(1)求曲线在点处的切线方程;
(2)设,讨论函数在上的单调性;
(3)证明:对任意的,有.
14.(2022年新全国高考Ⅱ卷数学试题)已知函数.
(1)当时,讨论的单调性;
(2)当时,,求a的取值范围;
(3)设,证明:.
15.(2022年新全国高考1卷数学试题)已知函数和有相同的最小值.
(1)求a;
(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
16.(2022年全国新高考浙江试题)设函数.
(1)求的单调区间;
(2)已知,曲线上不同的三点处的切线都经过点.证明:
(ⅰ)若,则;
(ⅱ)若,则.
(注:是自然对数的底数)
【2021年】
一、填空题
1.(2021年全国新高考Ⅰ卷数学试题)若过点可以作曲线的两条切线,则( )
A. B.
C. D.
二、填空题
2.(2021年全国高考甲卷数学(理)试题)曲线在点处的切线方程为__________.
3.(2021年全国新高考Ⅰ卷数学试题)函数的最小值为______.
三、解答题
4.(2021年全国高考乙卷数学(文)试题)已知函数.
(1)讨论的单调性;
(2)求曲线过坐标原点的切线与曲线的公共点的坐标.
5.(2021年全国高考乙卷数学(理)试题)设函数,已知是函数的极值点.
(1)求a;
(2)设函数.证明:.
6.(2021年全国高考甲卷数学(文)试题)设函数,其中.
(1)讨论的单调性;
(2)若的图像与轴没有公共点,求a的取值范围.
7.(2021年全国高考甲卷数学(理)试题)已知且,函数.
(1)当时,求的单调区间;
(2)若曲线与直线有且仅有两个交点,求a的取值范围.
8.(2021年全国新高考Ⅰ卷数学试题)已知函数.
(1)讨论的单调性;
(2)设,为两个不相等的正数,且,证明:.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
一元函数的导数及其应用
【2023年】
1.(新课标全国Ⅰ卷)已知函数.
(1)讨论的单调性;
(2)证明:当时,.
【详解】(1)因为,定义域为,所以,
当时,由于,则,故恒成立,
所以在上单调递减;
当时,令,解得,
当时,,则在上单调递减;
当时,,则在上单调递增;
综上:当时,在上单调递减;
当时,在上单调递减,在上单调递增.
(2)方法一:
由(1)得,,
要证,即证,即证恒成立,
令,则,
令,则;令,则;
所以在上单调递减,在上单调递增,
所以,则恒成立,
所以当时,恒成立,证毕.
方法二:
令,则,
由于在上单调递增,所以在上单调递增,
又,
所以当时,;当时,;
所以在上单调递减,在上单调递增,
故,则,当且仅当时,等号成立,
因为,
当且仅当,即时,等号成立,
所以要证,即证,即证,
令,则,
令,则;令,则;
所以在上单调递减,在上单调递增,
所以,则恒成立,
所以当时,恒成立,证毕.
2.(新课标全国Ⅱ卷)已知函数在区间上单调递增,则a的最小值为( ).
A. B.e C. D.
【答案】C
【详解】依题可知,在上恒成立,显然,所以,
设,所以,所以在上单调递增,
,故,即,即a的最小值为.
故选:C.
3.(新课标全国Ⅱ卷)若函数既有极大值也有极小值,则( ).
A. B. C. D.
【答案】BCD
【详解】函数的定义域为,求导得,
因为函数既有极大值也有极小值,则函数在上有两个变号零点,而,
因此方程有两个不等的正根,
于是,即有,,,显然,即,A错误,BCD正确.
故选:BCD
4.(新课标全国Ⅱ卷)(1)证明:当时,;
(2)已知函数,若是的极大值点,求a的取值范围.
【详解】(1)构建,则对恒成立,
则在上单调递增,可得,
所以;
构建,
则,
构建,则对恒成立,
则在上单调递增,可得,
即对恒成立,
则在上单调递增,可得,
所以;
综上所述:.
(2)令,解得,即函数的定义域为,
若,则,
因为在定义域内单调递减,在上单调递增,在上单调递减,
则在上单调递减,在上单调递增,
故是的极小值点,不合题意,所以.
当时,令
因为,
且,
所以函数在定义域内为偶函数,
由题意可得:,
(i)当时,取,,则,
由(1)可得,
且,
所以,
即当时,,则在上单调递增,
结合偶函数的对称性可知:在上单调递减,
所以是的极小值点,不合题意;
(ⅱ)当时,取,则,
由(1)可得,
构建,
则,
且,则对恒成立,
可知在上单调递增,且,
所以在内存在唯一的零点,
当时,则,且,
则,
即当时,,则在上单调递减,
结合偶函数的对称性可知:在上单调递增,
所以是的极大值点,符合题意;
综上所述:,即,解得或,
故a的取值范围为.
5.(全国乙卷数学(文))函数存在3个零点,则的取值范围是( )
A. B. C. D.
【答案】B
【详解】,则,
若要存在3个零点,则要存在极大值和极小值,则,
令,解得或,
且当时,,
当,,
故的极大值为,极小值为,
若要存在3个零点,则,即,解得,
故选:B.
(全国乙卷数学(文))6.已知函数.
(1)当时,求曲线在点处的切线方程.
(2)若函数在单调递增,求的取值范围.
【详解】(1)当时,,
则,
据此可得,
所以函数在处的切线方程为,即.
(2)由函数的解析式可得,
满足题意时在区间上恒成立.
令,则,
令,原问题等价于在区间上恒成立,
则,
当时,由于,故,在区间上单调递减,
此时,不合题意;
令,则,
当,时,由于,所以在区间上单调递增,
即在区间上单调递增,
所以,在区间上单调递增,,满足题意.
当时,由可得,
当时,在区间上单调递减,即单调递减,
注意到,故当时,,单调递减,
由于,故当时,,不合题意.
综上可知:实数得取值范围是.
7.(全国乙卷数学(理))设,若函数在上单调递增,则a的取值范围是______.
【答案】
【详解】由函数的解析式可得在区间上恒成立,
则,即在区间上恒成立,
故,而,故,
故即,故,
结合题意可得实数的取值范围是.
8.(全国乙卷数学(理))已知函数.
(1)当时,求曲线在点处的切线方程;
(2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.
(3)若在存在极值,求a的取值范围.
【详解】(1)当时,,
则,
据此可得,
函数在处的切线方程为,
即.
(2)由函数的解析式可得,
函数的定义域满足,即函数的定义域为,
定义域关于直线对称,由题意可得,
由对称性可知,
取可得,
即,则,解得,
经检验满足题意,故.
即存在满足题意.
(3)由函数的解析式可得,
由在区间存在极值点,则在区间上存在变号零点;
令,
则,
令,
在区间存在极值点,等价于在区间上存在变号零点,
当时,,在区间上单调递减,
此时,在区间上无零点,不合题意;
当,时,由于,所以在区间上单调递增,
所以,在区间上单调递增,,
所以在区间上无零点,不符合题意;
当时,由可得,
当时,,单调递减,
当时,,单调递增,
故的最小值为,
令,则,
函数在定义域内单调递增,,
据此可得恒成立,
则,
令,则,
当时,单调递增,
当时,单调递减,
故,即(取等条件为),
所以,
,且注意到,
根据零点存在性定理可知:在区间上存在唯一零点.
当时,,单调减,
当时,,单调递增,
所以.
令,则,
则单调递减,注意到,
故当时,,从而有,
所以

令得,所以,
所以函数在区间上存在变号零点,符合题意.
综合上面可知:实数得取值范围是.
9.(全国甲卷数学(文))曲线在点处的切线方程为( )
A. B. C. D.
【答案】C
【详解】设曲线在点处的切线方程为,
因为,
所以,
所以
所以
所以曲线在点处的切线方程为.
故选:C
10.(全国甲卷数学(文))已知函数.
(1)当时,讨论的单调性;
(2)若,求的取值范围.
【详解】(1)因为,所以,


令,由于,所以,
所以,
因为,,,
所以在上恒成立,
所以在上单调递减.
(2)法一:
构建,
则,
若,且,
则,解得,
当时,因为,
又,所以,,则,
所以,满足题意;
当时,由于,显然,
所以,满足题意;
综上所述:若,等价于,
所以的取值范围为.
法二:
因为,
因为,所以,,
故在上恒成立,
所以当时,,满足题意;
当时,由于,显然,
所以,满足题意;
当时,因为,
令,则,
注意到,
若,,则在上单调递增,
注意到,所以,即,不满足题意;
若,,则,
所以在上最靠近处必存在零点,使得,
此时在上有,所以在上单调递增,
则在上有,即,不满足题意;
综上:.
11.(全国甲卷数学(文))已知
(1)若,讨论的单调性;
(2)若恒成立,求a的取值范围.
【详解】(1)
令,则


当,即.
当,即.
所以在上单调递增,在上单调递减
(2)设

所以.
若,
即在上单调递减,所以.
所以当,符合题意.

当,所以.
.
所以,使得,即,使得.
当,即当单调递增.
所以当,不合题意.
综上,的取值范围为.
12.(2023天津卷)已知函数.
(1)求曲线在处切线的斜率;
(2)当时,证明:;
(3)证明:.
【详解】(1),则,
所以,故处的切线斜率为;
(2)要证时,即证,
令且,则,
所以在上递增,则,即.
所以时.
(3)设,,
则,
由(2)知:,则,
所以,故在上递减,故;
下证,
令且,则,
当时,递增,当时,递减,
所以,故在上恒成立,
则,
所以,,…,,
累加得:,而,
因为,所以,
则,
所以,故;
综上,,即.
13.(2023·北京·统考高考真题)设函数,曲线在点处的切线方程为.
(1)求的值;
(2)设函数,求的单调区间;
(3)求的极值点个数.
【分析】(1)先对求导,利用导数的几何意义得到,,从而得到关于的方程组,解之即可;
(2)由(1)得的解析式,从而求得,利用数轴穿根法求得与的解,由此求得的单调区间;
(3)结合(2)中结论,利用零点存在定理,依次分类讨论区间,,与上的零点的情况,从而利用导数与函数的极值点的关系求得的极值点个数.
【详解】(1)因为,所以,
因为在处的切线方程为,
所以,,
则,解得,
所以.
(2)由(1)得,
则,
令,解得,不妨设,,则,
易知恒成立,
所以令,解得或;令,解得或;
所以在,上单调递减,在,上单调递增,
即的单调递减区间为和,单调递增区间为和.
(3)由(1)得,,
由(2)知在,上单调递减,在,上单调递增,
当时,,,即
所以在上存在唯一零点,不妨设为,则,
此时,当时,,则单调递减;当时,,则单调递增;
所以在上有一个极小值点;
当时,在上单调递减,
则,故,
所以在上存在唯一零点,不妨设为,则,
此时,当时,,则单调递增;当时,,则单调递减;
所以在上有一个极大值点;
当时,在上单调递增,
则,故,
所以在上存在唯一零点,不妨设为,则,
此时,当时,,则单调递减;当时,,则单调递增;
所以在上有一个极小值点;
当时,,
所以,则单调递增,
所以在上无极值点;
综上:在和上各有一个极小值点,在上有一个极大值点,共有个极值点.
【点睛】关键点睛:本题第3小题的解题关键是判断与的正负情况,充分利用的单调性,寻找特殊点判断即可得解.
【2022年】
1.(2022年全国高考甲卷数学(理)试题) 当时,函数取得最大值,则( )
A. B. C. D. 1
【答案】B
【解析】
【分析】根据题意可知,即可解得,再根据即可解出.
【详解】因为函数定义域为,所以依题可知,,,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有.
故选:B.
2. (2022年全国高考乙卷数学(文)试题) 函数在区间的最小值、最大值分别为( )
A. B.
C. D.
【答案】D
【解析】
【分析】利用导数求得的单调区间,从而判断出在区间上的最小值和最大值.
【详解】,
所以区间和上,即单调递增;
在区间上,即单调递减,
又,,,
所以在区间上的最小值为,最大值为.
故选:D
3. (2022年新全国高考1卷数学试题)设,则( )
A. B. C. D.
【答案】C
【解析】
【分析】构造函数, 导数判断其单调性,由此确定的大小.
【详解】设,因为,
当时,,当时,
所以函数在单调递减,在上单调递增,
所以,所以,故,即,
所以,所以,故,所以,
故,
设,则,
令,,
当时,,函数单调递减,
当时,,函数单调递增,
又,
所以当时,,
所以当时,,函数单调递增,
所以,即,所以
故选:C.
4. (2022年新全国高考1卷数学试题)已知函数,则( )
A. 有两个极值点 B. 有三个零点
C. 点是曲线的对称中心 D. 直线是曲线的切线
【答案】AC
【解析】
【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.
【详解】由题,,令得或,
令得,
所以在上单调递减,在,上单调递增,
所以是极值点,故A正确;
因,,,
所以,函数在上有一个零点,
当时,,即函数在上无零点,
综上所述,函数有一个零点,故B错误;
令,该函数的定义域为,,
则是奇函数,是的对称中心,
将的图象向上移动一个单位得到的图象,
所以点是曲线的对称中心,故C正确;
令,可得,又,
当切点为时,切线方程为,当切点为时,切线方程为,
故D错误.
故选:AC.
5.(2022年新全国高考1卷数学试题) 已知函数及其导函数的定义域均为,记,若,均为偶函数,则( )
A. B. C. D.
【答案】BC
【解析】
【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.
【详解】因为,均为偶函数,
所以即,,
所以,,则,故C正确;
函数,的图象分别关于直线对称,
又,且函数可导,
所以,
所以,所以,
所以,,故B正确,D错误;
若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.
故选:BC.
【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.
6.(2022年新全国高考1卷数学试题) 若曲线有两条过坐标原点的切线,则a的取值范围是________________.
【答案】
【解析】
【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.
【详解】∵,∴,
设切点为,则,切线斜率,
切线方程:,
∵切线过原点,∴,
整理得:,
∵切线有两条,∴,解得或,
∴的取值范围是,
故答案为:
7. (2022年新全国高考Ⅱ卷数学试题)曲线过坐标原点的两条切线的方程为____________,____________.
【答案】 ①. ②.
【解析】
【分析】分和两种情况,当时设切点为,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;
【详解】解: 因为,
当时,设切点为,由,所以,所以切线方程为,
又切线过坐标原点,所以,解得,所以切线方程为,即;
当时,设切点为,由,所以,所以切线方程为,
又切线过坐标原点,所以,解得,所以切线方程为,即;
故答案为:;
8. (2022年全国高考乙卷数学(理)试题)已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________.
【答案】
【解析】
【分析】由分别是函数的极小值点和极大值点,可得时,,时,,再分和两种情况讨论,方程的两个根为,即函数与函数的图象有两个不同的交点,构造函数,利用指数函数的图象和图象变换得到的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.
【详解】解:,
因为分别是函数的极小值点和极大值点,
所以函数在和上递减,在上递增,
所以当时,,当时,,
若时,当时,,则此时,与前面矛盾,
故不符合题意,
若时,则方程的两个根为,
即方程的两个根为,
即函数与函数的图象有两个不同的交点,
∵,∴函数的图象是单调递减的指数函数,
又∵,∴的图象由指数函数向下关于轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的倍得到,如图所示:
设过原点且与函数的图象相切的直线的切点为,
则切线的斜率为,
故切线方程为,
则有,解得,
则切线的斜率为,
因为函数与函数的图象有两个不同的交点,
所以,解得,
又,所以,
综上所述,的范围为.
【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.
9. (2022年全国高考乙卷数学(文)试题)已知函数.
(1)当时,求的最大值;
(2)若恰有一个零点,求a的取值范围.
【答案】(1)
(2)
【解析】
【分析】(1)由导数确定函数的单调性,即可得解;
(2)求导得,按照、及结合导数讨论函数的单调性,求得函数的极值,即可得解.
【小问1详解】
当时,,则,
当时,,单调递增;
当时,,单调递减;
所以;
【小问2详解】
,则,
当时,,所以当时,,单调递增;
当时,,单调递减;
所以,此时函数无零点,不合题意;
当时,,在上,,单调递增;
在上,,单调递减;
又,
由(1)得,即,所以,
当时,,
则存在,使得,
所以仅在有唯一零点,符合题意;
当时,,所以单调递增,又,
所以有唯一零点,符合题意;
当时,,在上,,单调递增;
在上,,单调递减;此时,
由(1)得当时,,,所以,
此时
存在,使得,
所以在有一个零点,在无零点,
所以有唯一零点,符合题意;
综上,a的取值范围为.
【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.
10. (2022年全国高考甲卷数学(理)试题)已知函数.
(1)若,求a的取值范围;
(2)证明:若有两个零点,则.
【答案】(1)
(2)证明见的解析
【解析】
【分析】(1)由导数确定函数单调性及最值,即可得解;
(2)利用分析法,转化要证明条件为,再利用导数即可得证.
【小问1详解】
的定义域为,
令,得
当单调递减
当单调递增,
若,则,即
所以的取值范围为
【小问2详解】
由题知,一个零点小于1,一个零点大于1
不妨设
要证,即证
因为,即证
因为,即证
即证
即证
下面证明时,
设,


所以,而
所以,所以
所以在单调递增
即,所以

所以在单调递减
即,所以;
综上, ,所以.
【点睛】关键点点睛 :本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式
这个函数经常出现,需要掌握
11. (2022年全国高考甲卷数学(文)试题)已知函数,曲线在点处的切线也是曲线的切线.
(1)若,求a;
(2)求a的取值范围.
【答案】(1)3 (2)
【解析】
【分析】(1)先由上的切点求出切线方程,设出上的切点坐标,由斜率求出切点坐标,再由函数值求出即可;
(2)设出上的切点坐标,分别由和及切点表示出切线方程,由切线重合表示出,构造函数,求导求出函数值域,即可求得的取值范围.
【小问1详解】
由题意知,,,,则在点处的切线方程为,
即,设该切线与切于点,,则,解得,则,解得;
【小问2详解】
,则在点处的切线方程为,整理得,
设该切线与切于点,,则,则切线方程为,整理得,
则,整理得,
令,则,令,解得或,
令,解得或,则变化时,的变化情况如下表:
0 1
0 0 0
则的值域为,故的取值范围为.
12. (2022年全国高考乙卷数学(理)试题)已知函数
(1)当时,求曲线在点处的切线方程;
(2)若在区间各恰有一个零点,求a的取值范围.
【答案】(1)
(2)
【解析】
【分析】(1)先算出切点,再求导算出斜率即可
(2)求导,对分类讨论,对分两部分研究
【小问1详解】
的定义域为
当时,,所以切点为,所以切线斜率为2
所以曲线在点处的切线方程为
【小问2详解】

若,当,即
所以在上单调递增,
故在上没有零点,不合题意
若,当,则
所以在上单调递增所以,即
所以在上单调递增,
故在上没有零点,不合题意

(1)当,则,所以在上单调递增
所以存在,使得,即
当单调递减
当单调递增
所以


所以在上有唯一零点
又没有零点,即在上有唯一零点
(2)当

所以在单调递增
所以存在,使得
当单调递减
当单调递增,

所以存在,使得,即
当单调递增,当单调递减

而,所以当
所以在上有唯一零点,上无零点
即在上有唯一零点
所以,符合题意
所以若在区间各恰有一个零点,求的取值范围为
【点睛】方法点睛:本题的关键是对的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.
13.(2022年全国新高考北京试题) 已知函数.
(1)求曲线在点处的切线方程;
(2)设,讨论函数在上的单调性;
(3)证明:对任意的,有.
【答案】(1)
(2)在上单调递增.
(3)证明见解析
【解析】
【分析】(1)先求出切点坐标,由导数求得切线斜率,即得切线方程;
(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;
(3)令,,即证,由第二问结论可知在[0,+∞)上单调递增,即得证.
【小问1详解】
解:因为,所以,
即切点坐标为,
又,
∴切线斜率
∴切线方程为:
【小问2详解】
解:因为,
所以,
令,
则,
∴在上单调递增,

∴在上恒成立,
∴在上单调递增.
【小问3详解】
解:原不等式等价于,
令,,
即证,
∵,

由(2)知在上单调递增,
∴,

∴在上单调递增,又因为,
∴,所以命题得证.
14.(2022年新全国高考Ⅱ卷数学试题)已知函数.
(1)当时,讨论的单调性;
(2)当时,,求a的取值范围;
(3)设,证明:.
【答案】(1)的减区间为,增区间为.
(2)
(3)见解析
【解析】
【分析】(1)求出,讨论其符号后可得的单调性.
(2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.
(3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.
【小问1详解】
当时,,则,
当时,,当时,,
故的减区间为,增区间为.
【小问2详解】
设,则,
又,设,
则,
若,则,
因为为连续不间断函数,
故存在,使得,总有,
故在为增函数,故,
故在为增函数,故,与题设矛盾.
若,则,
下证:对任意,总有成立,
证明:设,故,
故在上为减函数,故即成立.
由上述不等式有,
故总成立,即在上为减函数,
所以.
当时,有,
所以在上为减函数,所以.
综上,.
【小问3详解】
取,则,总有成立,
令,则,
故即对任意的恒成立.
所以对任意的,有,
整理得到:,


故不等式成立.
【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.
15.(2022年新全国高考1卷数学试题)已知函数和有相同的最小值.
(1)求a;
(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
【答案】(1)
(2)见解析
【解析】
【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.
(2)根据(1)可得当时,的解的个数、的解的个数均为2,构建新函数,利用导数可得该函数只有一个零点且可得的大小关系,根据存在直线与曲线、有三个不同的交点可得的取值,再根据两类方程的根的关系可证明三根成等差数列.
【小问1详解】
的定义域为,而,
若,则,此时无最小值,故.
的定义域为,而.
当时,,故在上为减函数,
当时,,故在上为增函数,
故.
当时,,故在上为减函数,
当时,,故在上为增函数,
故.
因为和有相同的最小值,
故,整理得到,其中,
设,则,
故为上的减函数,而,
故的唯一解为,故的解为.
综上,.
【小问2详解】
由(1)可得和的最小值为.
当时,考虑的解的个数、的解的个数.
设,,
当时,,当时,,
故在上为减函数,在上为增函数,
所以,
而,,
设,其中,则,
故在上为增函数,故,
故,故有两个不同的零点,即的解的个数为2.
设,,
当时,,当时,,
故在上为减函数,在上为增函数,
所以,
而,,
有两个不同的零点即的解的个数为2.
当,由(1)讨论可得、仅有一个解,
当时,由(1)讨论可得、均无根,
故若存在直线与曲线、有三个不同的交点,
则.
设,其中,故,
设,,则,
故在上增函数,故即,
所以,所以在上为增函数,
而,,
故在上有且只有一个零点,且:
当时,即即,
当时,即即,
因此若存在直线与曲线、有三个不同的交点,
故,
此时有两个不同的根,
此时有两个不同的根,
故,,,
所以即即,
故为方程的解,同理也为方程的解
又可化即即,
故为方程的解,同理也为方程的解,
所以,而,
故即.
【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.
16.(2022年全国新高考浙江试题)设函数.
(1)求的单调区间;
(2)已知,曲线上不同的三点处的切线都经过点.证明:
(ⅰ)若,则;
(ⅱ)若,则.
(注:是自然对数的底数)
【答案】(1)的减区间为,增区间为.
(2)(ⅰ)见解析;(ⅱ)见解析.
【解析】
【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.
(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ) ,,则题设不等式可转化为,结合零点满足的方程进一步转化为,利用导数可证该不等式成立.
【小问1详解】

当,;当,,
故的减区间为,的增区间为.
【小问2详解】
(ⅰ)因为过有三条不同的切线,设切点为,
故,
故方程有3个不同的根,
该方程可整理为,
设,


当或时,;当时,,
故在上为减函数,在上为增函数,
因为有3个不同的零点,故且,
故且,
整理得到:且,
此时,
设,则,
故为上的减函数,故,
故.
(ⅱ)当时,同(ⅰ)中讨论可得:
故在上为减函数,在上为增函数,
不妨设,则,
因为有3个不同的零点,故且,
故且,
整理得到:,
因为,故,
又,
设,,则方程即为:
即为,

则为有三个不同的根,
设,,
要证:,即证,
即证:,
即证:,
即证:,
而且,
故,
故,
故即证:,
即证:
即证:,
记,则,
设,则即,
故在上为增函数,故,
所以,
记,
则,
所以在为增函数,故,
故即,
故原不等式得证:
【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.
【2021年】
一、填空题
1.(2021年全国新高考Ⅰ卷数学试题)若过点可以作曲线的两条切线,则( )
A. B.
C. D.
【答案】D
【分析】在曲线上任取一点,对函数求导得,
所以,曲线在点处的切线方程为,即,
由题意可知,点在直线上,可得,
令,则.
当时,,此时函数单调递增,
当时,,此时函数单调递减,
所以,,
由题意可知,直线与曲线的图象有两个交点,则,
当时,,当时,,作出函数的图象如下图所示:
由图可知,当时,直线与曲线的图象有两个交点.
故选:D.
解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.
故选:D.
二、填空题
2.(2021年全国高考甲卷数学(理)试题)曲线在点处的切线方程为__________.
【答案】
【分析】由题,当时,,故点在曲线上.
求导得:,所以.
故切线方程为.
故答案为:.
3.(2021年全国新高考Ⅰ卷数学试题)函数的最小值为______.
【答案】1
【分析】由题设知:定义域为,
∴当时,,此时单调递减;
当时,,有,此时单调递减;
当时,,有,此时单调递增;
又在各分段的界点处连续,
∴综上有:时,单调递减,时,单调递增;
∴故答案为:1.
三、解答题
4.(2021年全国高考乙卷数学(文)试题)已知函数.
(1)讨论的单调性;
(2)求曲线过坐标原点的切线与曲线的公共点的坐标.
【答案】(1)答案见解析;(2) 和.
【分析】(1)由函数的解析式可得:,
导函数的判别式,
当时,在R上单调递增,
当时,的解为:,
当时,单调递增;
当时,单调递减;
当时,单调递增;
综上可得:当时,在R上单调递增,
当时,在,上
单调递增,在上单调递减.
(2)由题意可得:,,
则切线方程为:,
切线过坐标原点,则:,
整理可得:,即:,
解得:,则,
切线方程为:,
与联立得,
化简得,由于切点的横坐标1必然是该方程的一个根,是的一个因式,∴该方程可以分解因式为
解得,

综上,曲线过坐标原点的切线与曲线的公共点的坐标为和.
5.(2021年全国高考乙卷数学(理)试题)设函数,已知是函数的极值点.
(1)求a;
(2)设函数.证明:.
【答案】1;证明见详解
【分析】(1)由,,
又是函数的极值点,所以,解得;
(2)由(1)得,,且,
当 时,要证,, ,即证,化简得;
同理,当时,要证,, ,即证,化简得;
令,再令,则,,
令,,
当时,,单减,假设能取到,则,故;
当时,,单增,假设能取到,则,故;
综上所述,在恒成立
6.(2021年全国高考甲卷数学(文)试题)设函数,其中.
(1)讨论的单调性;
(2)若的图像与轴没有公共点,求a的取值范围.
【答案】(1)的减区间为,增区间为;(2).
【分析】(1)函数的定义域为,
又,
因为,故,
当时,;当时,;
所以的减区间为,增区间为.
(2)因为且的图与轴没有公共点,
所以的图象在轴的上方,
由(1)中函数的单调性可得,
故即.
7.(2021年全国高考甲卷数学(理)试题)已知且,函数.
(1)当时,求的单调区间;
(2)若曲线与直线有且仅有两个交点,求a的取值范围.
【答案】(1)上单调递增;上单调递减;(2).
【分析】(1)当时,令得,当时,,当时,,
∴函数在上单调递增;上单调递减;
(2),设函数,
则,令,得,
在内,单调递增;
在上,单调递减;
,
又,当趋近于时,趋近于0,
所以曲线与直线有且仅有两个交点,即曲线与直线有两个交点的充分必要条件是,这即是,
所以的取值范围是.
8.(2021年全国新高考Ⅰ卷数学试题)已知函数.
(1)讨论的单调性;
(2)设,为两个不相等的正数,且,证明:.
【答案】(1)的递增区间为,递减区间为;(2)证明见解析.
【分析】(1)函数的定义域为,
又,
当时,,当时,,
故的递增区间为,递减区间为.
(2)因为,故,即,
故,
设,由(1)可知不妨设.
因为时,,时,,
故.
先证:,
若,必成立.
若, 要证:,即证,而,
故即证,即证:,其中.
设,
则,
因为,故,故,
所以,故在为增函数,所以,
故,即成立,所以成立,
综上,成立.
设,则,
结合,可得:,
即:,故,
要证:,即证,即证,
即证:,即证:,
令,
则,
先证明一个不等式:.
设,则,
当时,;当时,,
故在上为增函数,在上为减函数,故,
故成立
由上述不等式可得当时,,故恒成立,
故在上为减函数,故,
故成立,即成立.
综上所述,.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录