专题16 圆的证明与求值问题(原卷版+解析版)

文档属性

名称 专题16 圆的证明与求值问题(原卷版+解析版)
格式 zip
文件大小 2.3MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-04-01 12:43:20

文档简介

中小学教育资源及组卷应用平台
2024年数学中考三轮冲刺必考解答题20个专题专练(全国通用)
专题16 圆的证明与求值问题
1. (2023福建)如图,已知内接于的延长线交于点,交于点,交的切线于点,且.
(1)求证:;
(2)求证:平分.
【答案】(1)见解析 (2)见解析
【解析】【分析】(1)由切线的性质可得,由圆周角定理可得,即,再根据平行线的性质可得,则根据角的和差可得,最后根据平行线的判定定理即可解答;
(2)由圆周角定理可得,再由等腰三角形的性质可得,进而得到,再结合得到即可证明结论.
【详解】(1)证明是的切线,
,即.
是的直径,

∴.


,即,

(2)与都是所对的圆周角,




由(1)知,

平分.
【点睛】本题主要考查角平分线、平行线的判定与性质、圆周角定理、切线的性质等知识点,灵活运用相关性质定理是解答本题的关键.
2.(2023甘肃兰州) 如图,内接于,是的直径,,于点,交于点,交于点,,连接.
(1)求证:是的切线;
(2)判断的形状,并说明理由;
(3)当时,求的长.
【答案】(1)见解析 (2)是等腰三角形,理由见解析 (3)
【解析】【分析】(1)连接,根据圆周角定理得出,根据已知得出,根据得出,进而根据对等角相等,以及三角形内角和定理可得,即可得证;
(2)根据题意得出,则,证明,得出,等量代换得出,即可得出结论;
(3)根据,,设,则,等边对等角得出,则.
【详解】(1)证明:如图所示,连接,
∵,
∴,
∵,
∴,
∵,
∴,

∴,
即,又是的直径,
∴是的切线;
(2)∵,是的直径,
∴,,
∴,
∵,,
∵,
∴,
又,
∴,
∴是等腰三角形,
(3)∵,,
设,则,
∴,
∴.
【点睛】考查切线的判定,等腰三角形的性质与判定,圆周角定理,熟练掌握以上知识是解题的关键.
3.(2023贵州省) 如图,已知是等边三角形的外接圆,连接并延长交于点,交于点,连接,.
(1)写出图中一个度数为的角:_______,图中与全等的三角形是_______;
(2)求证:;
(3)连接,,判断四边形的形状,并说明理由.
【答案】(1)、、、;;
(2)证明见详解; (3)四边形是菱形;
【解析】【分析】(1)根据外接圆得到是的角平分线,即可得到的角,根据垂径定理得到,即可得到答案;
(2)根据(1)得到,根据垂径定理得到,即可得到证明;
(3)连接,,结合得到 ,是等边三角形,从而得到,即可得到证明;
【详解】(1)∵是等边三角形的外接圆,
∴是的角平分线,,
∴,
∵是的直径,
∴,
∴,
∴的角有:、、、,
∵是的角平分线,
∴,,
在与中,
∵,
∴,
故答案为:、、、,;
(2)证明:∵,,
∴;
(3)连接,,
∵,,
∴ ,是等边三角形,
∴,
∴四边形是菱形.
【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.
4. (2023湖北宜昌)如图1,已知是的直径,是的切线,交于点,.
(1)填空:的度数是_________,的长为_________;
(2)求的面积;
(3)如图2,,垂足为.是上一点,.延长,与,的延长线分别交于点,求的值.
【答案】(1),5; (2) (3)
【解析】【分析】(1)根据切线性质和勾股定理分别求解即可;
(2)由面积法求出,再利用勾股定理求,则的面积可求;
(3)先证明,得到,利用,分别得到,进而计算,,在分别求出则问题可解;
【详解】(1)∵是的直径,是的切线,
∴的度数是;
∵,
∴;
故答案为:,5;
(2)如图,
∵是的直径,
∴,

∴由面积法,



(3)方法一:如图,







是等腰直角三角形,

等腰直角三角形

∴,
∴,




方法二:如图



是等腰直角三角形,
是等腰直角三角形,,

【点睛】本题考查了圆的切线的性质和相似三角形的性质和判定,解答关键是根据条件证明三角形相似,再根据相似三角形的性质解答问题.
5.(2023武汉) 如图,都是的半径,.
(1)求证:;
(2)若,求的半径.
【答案】(1)见解析 (2)
【解析】【分析】(1)由圆周角定理得出,,再根据,即可得出结论;
(2)过点作半径于点,根据垂径定理得出,证明,得出,在中根据勾股定理得出,在中,根据勾股定理得出,求出即可.
【详解】(1)证明:∵,
∴,
∵,
∴,


(2)过点作半径于点,则,

∴,



在中,

在中,,

,即的半径是.
【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,解题的关键是作出辅助线,熟练掌握圆周角定理.
6. (2023湖南株洲)如图所示,四边形是半径为R的的内接四边形,是的直径,,直线l与三条线段、、的延长线分别交于点E、F、G.且满足.
(1)求证:直线直线;
(2)若;
①求证:;
②若,求四边形的周长.
【答案】(1)见解析; (2)①见解析,②.
【解析】【分析】(1)在中,根据同弧所对的圆周角相等可得,结合已知在中根据三角形内角和定理可求得;
(2)①根据圆内接四边形的性质和邻补角可得,由直径所对的圆周角是直角和(1)可得,结合已知即可证得;
②在中由,可得,结合题意易证,在中由勾股定理可求得,由①可知易得,最后代入计算即可求得周长.
【详解】(1)证明:在中,

,即,
在中,


即直线直线;
(2)①四边形是半径为R的的内接四边形,



是的直径,

由(1)可知,

在与中,


②在中,,

是的直径,




在中,

即,
解得:,
由①可知,


四边形的周长为:

【点睛】本题考查了同弧所对的圆周角相等、三角形内角和定理、垂直的定义、圆内接四边形的性质、邻补角互补、直径所对的圆周角是直角、全等三角形的判定和性质、勾股定理解直角三角形以及周长的计算;解题的关键是灵活运用以上知识,综合求解.
7.(2023江苏扬州) 如图,在中,,点D是上一点,且,点O在上,以点O为圆心的圆经过C、D两点.
(1)试判断直线与的位置关系,并说明理由;
(2)若的半径为3,求的长.
【答案】(1)直线与相切,理由见解析 (2)6
【解析】【分析】(1)连接,根据圆周角定理,得到,进而得到,即可得出与相切;
(2)解直角三角形,求出的长,进而求出的长,再解直角三角形,求出的长即可.
【详解】
(1)直线与相切,理由如下:
连接,则:,
∵,即:,
∴,
∵,
∴,
∴,
∴,
∵为的半径,
∴直线与相切;
(2)∵,的半径为3,
∴,
∴,
∴,
∵,
∴,
设:,
则:,
∴,
∴.
【点睛】考查切线的判定,解直角三角形.熟练掌握切线的判定方法,正弦的定义,是解题的关键.
8.(2023江苏苏州) 如图,是的内接三角形,是的直径,,点在上,连接并延长,交于点,连接,作,垂足为.
(1)求证:;
(2)若,求的长.
【答案】(1)证明见解析 (2)
【解析】【分析】(1)分别证明,,从而可得结论;
(2)求解,,可得,证明,设,则,,证明,可得,可得,,,从而可得答案.
【详解】
(1)证明:∵是的直径,,
∴,
∵,
∴.
(2)∵,,
∴,,
∵,
∴,
∵,
∴,
∴,
设,则,,
∵,,
∴,
∴,
∴,则,
∴,
∴,
∴.
【点睛】本题考查的是圆周角定理的应用,相似三角形的判定与性质,锐角三角函数的应用,熟记圆的基本性质与重要定理是解本题的关键.
9. (2023辽宁本溪)如图,是的直径,点在上,,点在线段的延长线上,且.
(1)求证:EF与相切;
(2)若,求的长.
【答案】(1)见解析 (2).
【解析】分析】(1)利用圆周角定理得到,结合已知推出,再证明,推出,即可证明结论成立;
(2)设半径为x,则,在中,利用正弦函数求得半径的长,再在中,解直角三角形即可求解.
【详解】
(1)证明:连接,
∵,∴,
∵,
∴,
∵是的直径,
∴,
∵,
∴,
∴,
∵为半径,
∴EF与相切;
(2)解:设半径为x,则,
∵,,
∴,
在中,,,
∴,即,
解得,
经检验,是所列方程的解,
∴半径为4,则,
在中,,,,
∴,
∴.
【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.
10.(2021四川自贡)如图,点D在以AB为直径的⊙O上,过D作⊙O的切线交AB延长线于点C,AE⊥CD于点E,交⊙O于点F,连接AD,FD.
(1)求证:∠DAE=∠DAC;
(2)求证:DF AC=AD DC;
(3)若sin∠C=,AD=4,求EF的长.
【解析】(1)连接OD,证明AE∥OD,推出∠EAD=∠ADO,再证明∠ADO=∠OAD即可解决问题.
(2)如图,连接BF.证明△DAF∽△CAD,可得结论.
(3)过点D作DH⊥AC于H.由sin∠C==,假设OD=k,OC=4k,则OA=OD=k,CD=k,在Rt△ADH中,利用勾股定理求出k,再利用(2)中结论求出DF,再根据sin∠EDF=sin∠DAH,推出=,可得结论.
【解答】(1)证明:如图,连接OD.
∵CD是⊙O的切线,
∴OD⊥EC,
∵AE⊥CE,
∴AE∥OD,
∴∠EAD=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAE=∠DAC.
(2)证明:如图,连接BF.
∵BF是直径,
∴∠AFB=90°,
∵AE⊥EC,
∴∠AFB=∠E=90°,
∴BF∥EC,
∴∠ABF=∠C,
∵∠ADF=∠ABF,
∴∠ADF=∠C,
∵∠DAF=∠DAC,
∴△DAF∽△CAD,
∴=,
∴DF AC=AD DC.
(3)解:过点D作DH⊥AC于H.
∵CD是⊙O的切线,
∴∠ODC=90°,
∵sin∠C==,
∴可以假设OD=k,OC=4k,则OA=OD=k,CD=k,
∵ OD DC= OC DH,
∴DH=k,
∴OH==k,
∴AH=OA+OH=k,
∵AD2=AH2+DH2,
∴(4)2=(k)2+(k)2
∴k=8或﹣8(舍弃),
∴DH=2,AC=5k=40,DC=8,
∵DF AC=AD DC,
∴DF=4,
∵∠ADE=∠DAC+∠C=∠ADF+∠EDF,∠ADF=∠C,
∴∠EDF=∠DAC,
∴sin∠EDF=sin∠DAH,
∴=,
∴=,
∴EF=6.
11.(2023湖北鄂州) 如图,为的直径,E为上一点,点C为的中点,过点C作,交的延长线于点D,延长交的延长线于点F.
(1)求证:是的切线;
(2)若,,求的半径长.
【答案】(1)证明见解析 (2)
【解析】【分析】(1)连接,根据弦、弧、圆周角的关系可证,根据圆的性质得,证明,得到,根据切线的判定定理证明;
(2)连接,,根据勾股定理得到的长,根据等弧对等弦得到,根据圆内接四边形对角互补得,推出,证明,利用相似三角形的性质即可求解.
【详解】(1)证明:连接,
∵点C为的中点,
∴,
∴,
∵,


∴,
∴,
∵为半径,
∴为切线;
(2)连接,,
∵,
∴,
∵,,
∴,
∵D是的中点,
∴,
∴,
∵为的直径,
∴,
∵,,
∴,
∴,
∴,
∴,
∴,
∴的半径长为.
【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024年数学中考三轮冲刺必考解答题20个专题专练(全国通用)
专题16 圆的证明与求值问题
1. (2023福建)如图,已知内接于的延长线交于点,交于点,交的切线于点,且.
(1)求证:;
(2)求证:平分.
2.(2023甘肃兰州) 如图,内接于,是的直径,,于点,交于点,交于点,,连接.
(1)求证:是的切线;
(2)判断的形状,并说明理由;
(3)当时,求的长.
3.(2023贵州省) 如图,已知是等边三角形的外接圆,连接并延长交于点,交于点,连接,.
(1)写出图中一个度数为的角:_______,图中与全等的三角形是_______;
(2)求证:;
(3)连接,,判断四边形的形状,并说明理由.
4. (2023湖北宜昌)如图1,已知是的直径,是的切线,交于点,.
(1)填空:的度数是_________,的长为_________;
(2)求的面积;
(3)如图2,,垂足为.是上一点,.延长,与,的延长线分别交于点,求的值.
5.(2023武汉) 如图,都是的半径,.
(1)求证:;
(2)若,求的半径.
6. (2023湖南株洲)如图所示,四边形是半径为R的的内接四边形,是的直径,,直线l与三条线段、、的延长线分别交于点E、F、G.且满足.
(1)求证:直线直线;
(2)若;
①求证:;
②若,求四边形的周长.
7.(2023江苏扬州) 如图,在中,,点D是上一点,且,点O在上,以点O为圆心的圆经过C、D两点.
(1)试判断直线与的位置关系,并说明理由;
(2)若的半径为3,求的长.
8.(2023江苏苏州) 如图,是的内接三角形,是的直径,,点在上,连接并延长,交于点,连接,作,垂足为.
(1)求证:;
(2)若,求的长.
9. (2023辽宁本溪)如图,是的直径,点在上,,点在线段的延长线上,且.
(1)求证:EF与相切;
(2)若,求的长.
10.(2021四川自贡)如图,点D在以AB为直径的⊙O上,过D作⊙O的切线交AB延长线于点C,AE⊥CD于点E,交⊙O于点F,连接AD,FD.
(1)求证:∠DAE=∠DAC;
(2)求证:DF AC=AD DC;
(3)若sin∠C=,AD=4,求EF的长.
11.(2023湖北鄂州) 如图,为的直径,E为上一点,点C为的中点,过点C作,交的延长线于点D,延长交的延长线于点F.
(1)求证:是的切线;
(2)若,,求的半径长.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录