专题15 解直角三角形及其应用问题(原卷版+解析版)

文档属性

名称 专题15 解直角三角形及其应用问题(原卷版+解析版)
格式 zip
文件大小 4.6MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-04-01 12:28:44

文档简介

中小学教育资源及组卷应用平台
2024年数学中考三轮冲刺必考解答题20个专题专练(全国通用)
专题15 解直角三角形及其应用问题
1.(2023广东省) 2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂,两臂夹角时,求A,B两点间的距离.(结果精确到,参考数据,,)
2. (2023甘肃兰州)如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得、,.求“龙”字雕塑的高度.(B,C,D三点共线,.结果精确到0.1m)(参考数据:,,,,,)
3. (2023贵州省)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚为起点,沿途修建、两段长度相等的观光索道,最终到达山顶处,中途设计了一段与平行的观光平台为.索道与的夹角为,与水平线夹角为,两处的水平距离为,,垂足为点.(图中所有点都在同一平面内,点在同一水平线上)
(1)求索道的长(结果精确到);
(2)求水平距离的长(结果精确到).
(参考数据:,,,)
4. (2023河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪为正方形,,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线交于点H.经测量,点A距地面,到树的距离,.求树的高度(结果精确到).
5. (2023湖北宜昌)2023年5月30日,“神舟十六号”航天飞船成功发射.如图,飞船在离地球大约的圆形轨道上,当运行到地球表面P点的正上方F点时,从中直接看到地球表面一个最远的点是点Q.在中,.
(参考数据:)
(1)求的值(精确到);
(2)在中,求的长(结果取整数).
6. (2023湖南株洲)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”一辆车从被山峰遮挡的道路②上的点B处由南向北行驶.已知,,线段的延长线交直线于点D.
(1)求大小;
(2)若在点B处测得点O在北偏西方向上,其中米.问该轿车至少行驶多少米才能发现点A处货车?(当该轿车行驶至点D处时,正好发现点A处的货车)
7. (2023吉林省)某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:
填写人:王朵 综合实践活动报告 时间:2023年4月20日
活动任务:测量古树高度
活动过程
【步骤一】设计测量方案小组成员讨论后,画出如图①的测量草图,确定需测的几何量.
【步骤二】准备测量工具自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用它可以测量仰角或俯角,如图②所示准备皮尺.
【步骤三】实地测量并记录数据如图③,王朵同学站在离古树一定距离的地方,将这个仪器用手托起,拿到眼前,使视线沿着仪器的直径刚好到达古树的最高点.如图④,利用测角仪,测量后计算得出仰角.测出眼睛到地面的距离.测出所站地方到古树底部的距离. ________...
【步骤四】计算古树高度.(结果精确到)(参考数据:)
请结合图①、图④和相关数据写出的度数并完成【步骤四】.
8. (2023江苏苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,为长度固定的支架,支架在处与立柱连接(垂直于,垂足为),在处与篮板连接(所在直线垂直于),是可以调节长度的伸缩臂(旋转点处的螺栓改变的长度,使得支架绕点旋转,从而改变四边形的形状,以此调节篮板的高度).已知,测得时,点离地面的高度为.调节伸缩臂,将由调节为,判断点离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:)
9. (2023辽宁本溪)暑假期间,小明与小亮相约到某旅游风景区登山,需要登顶高的山峰,由山底A处先步行到达处,再由处乘坐登山缆车到达山顶处.已知点A,B.D,E,F在同一平面内,山坡的坡角为,缆车行驶路线与水平面的夹角为(换乘登山缆车的时间忽略不计)
(1)求登山缆车上升的高度;
(2)若步行速度为,登山缆车的速度为,求从山底A处到达山顶处大约需要多少分钟(结果精确到)
(参考数据:)
10. 超速容易造成交通事故.高速公路管理部门在某隧道内的两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且在同一直线上.点、点到的距离分别为,且,在处测得点的俯角为,在处测得点的俯角为,小型汽车从点行驶到点所用时间为.
(1)求两点之间的距离(结果精确到);
(2)若该隧道限速80千米/小时,判断小型汽车从点行驶到点是否超速?并通过计算说明理由.(参考数据:)
11. 为了美化环境,提高民众的生活质量,市政府在三角形花园边上修建一个四边形人工湖泊,并沿湖泊修建了人行步道.如图,点在点的正东方向170米处,点在点的正北方向,点都在点的正北方向,长为100米,点在点的北偏东方向,点在点的北偏东方向.
(1)求步道的长度.
(2)点处有一个小商店,某人从点出发沿人行步道去商店购物,可以经点到达点,也可以经点到达点,请通过计算说明他走哪条路较近.结果精确到个位)(参考数据:)
12.(2023湖北鄂州) 鄂州市莲花山是国家级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为;接着他沿自动扶梯到达扶梯顶端D点,测得点A和点D的水平距离为15米,且;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,,).
(1)求自动扶梯长度;
(2)求大型条幅的长度.(结果保留根号)
13. (2023湖南郴州) 某次军事演习中,一艘船以的速度向正东航行,在出发地测得小岛在它的北偏东方向,小时后到达处,测得小岛在它的北偏西方向,求该船在航行过程中与小岛的最近距离(参考数据:,.结果精确到).
14. (2023湖北天门)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形,斜面坡度是指坡面的铅直高度与水平宽度的比.已知斜坡长度为20米,,求斜坡的长.(结果精确到米)
(参考数据:)
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024年数学中考三轮冲刺必考解答题20个专题专练(全国通用)
专题15 解直角三角形及其应用问题
1.(2023广东省) 2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂,两臂夹角时,求A,B两点间的距离.(结果精确到,参考数据,,)
【答案】
【解析】连接,作作于D,由等腰三角形“三线合一”性质可知,,,在中利用求出,继而求出即可.
【详解】连接,作于D,
∵,,
∴是边边上的中线,也是的角平分线,
∴,,
在中,,,
∴,


答:A,B两点间的距离为.
【点睛】考查等腰三角的性质,解直角三角形的应用等知识,掌握等腰三角形的性质是解题的关键.
2. (2023甘肃兰州)如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得、,.求“龙”字雕塑的高度.(B,C,D三点共线,.结果精确到0.1m)(参考数据:,,,,,)
【答案】“龙”字雕塑的高度为.
【解析】【分析】在和中,分别求得和的长,据此求解即可.
【详解】解:在中,,,
∴,
在中,,,
∴,
∴,
答:“龙”字雕塑的高度为.
【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
3. (2023贵州省)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚为起点,沿途修建、两段长度相等的观光索道,最终到达山顶处,中途设计了一段与平行的观光平台为.索道与的夹角为,与水平线夹角为,两处的水平距离为,,垂足为点.(图中所有点都在同一平面内,点在同一水平线上)
(1)求索道的长(结果精确到);
(2)求水平距离的长(结果精确到).
(参考数据:,,,)
【答案】(1) (2)
【解析】【分析】(1)根据的余玄直接求解即可得到答案;
(2)根据、两段长度相等及与水平线夹角为求出C到的距离即可得到答案;
【详解】(1)∵两处的水平距离为,索道与的夹角为,
∴;
(2)∵、两段长度相等,与水平线夹角为,
∴,,
∴;
【点睛】本题考查解直角三角形解决实际应用题,解题的关键是熟练掌握几种三角函数.
4. (2023河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪为正方形,,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线交于点H.经测量,点A距地面,到树的距离,.求树的高度(结果精确到).
【答案】树的高度为
【解析】【分析】由题意可知,,,易知,可得,进而求得,利用即可求解.
【详解】由题意可知,,,
则,
∴,
∵,,
则,
∴,
∵,则,
∴,
∴,
答:树的高度为.
【点睛】本题考查解直角三角形的应用,得到是解决问题的关键.
5. (2023湖北宜昌)2023年5月30日,“神舟十六号”航天飞船成功发射.如图,飞船在离地球大约的圆形轨道上,当运行到地球表面P点的正上方F点时,从中直接看到地球表面一个最远的点是点Q.在中,.
(参考数据:)
(1)求的值(精确到);
(2)在中,求的长(结果取整数).
【答案】(1) (2)
【解析】【分析】(1)在中,利用余弦函数即可求解;
(2)先求得的度数,再利用弧长公式即可求解.
【详解】(1)由题意可知,,


在中,;
(2),

的长为

【点睛】本题考查了求余弦函数的值,弧长公式的应用,解题的关键是灵活运用所学知识解决问题.
6. (2023湖南株洲)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”一辆车从被山峰遮挡的道路②上的点B处由南向北行驶.已知,,线段的延长线交直线于点D.
(1)求大小;
(2)若在点B处测得点O在北偏西方向上,其中米.问该轿车至少行驶多少米才能发现点A处货车?(当该轿车行驶至点D处时,正好发现点A处的货车)
【答案】(1)
(2)轿车至少行驶24米才能发现点A处的货车
【解析】【分析】(1)由得到,由得到,由得到,即可得到的大小;
(2)由得到,在中求得,由勾股定理得到,由得到,即可得到答案.
【详解】(1)∵,
∴,
∵,
∴,
∵,
∴,
∴,
即的大小为;
(2)∵,
∴,
在中,,,
∴,
∴,
∵,
∴,
∴,
即轿车至少行驶24米才能发现点A处的货车.
【点睛】此题考查了解直角三角形、勾股定理、垂直定义和平行线的性质、方位角的的定义等知识,读懂题意,熟练掌握直角三角形的性质和锐角三角形函数的定义是解题的关键.
7. (2023吉林省)某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:
填写人:王朵 综合实践活动报告 时间:2023年4月20日
活动任务:测量古树高度
活动过程
【步骤一】设计测量方案小组成员讨论后,画出如图①的测量草图,确定需测的几何量.
【步骤二】准备测量工具自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用它可以测量仰角或俯角,如图②所示准备皮尺.
【步骤三】实地测量并记录数据如图③,王朵同学站在离古树一定距离的地方,将这个仪器用手托起,拿到眼前,使视线沿着仪器的直径刚好到达古树的最高点.如图④,利用测角仪,测量后计算得出仰角.测出眼睛到地面的距离.测出所站地方到古树底部的距离. ________...
【步骤四】计算古树高度.(结果精确到)(参考数据:)
请结合图①、图④和相关数据写出的度数并完成【步骤四】.
【答案】,
【解析】根据测角仪显示的度数和直角三角形两锐角互余即可求得的度数,证明四边形是矩形得到,再解直角三角形求得的度数,即可求解.
【详解】测角仪显示的度数为,
∴,
∵,,,
∴,
∴四边形是矩形,,
在中,,
∴.
【点睛】本题考查了解直角三角形的实际应用和矩形的判定与性质,熟练掌握解直角三角形的运算是解题的关键.
8. (2023江苏苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,为长度固定的支架,支架在处与立柱连接(垂直于,垂足为),在处与篮板连接(所在直线垂直于),是可以调节长度的伸缩臂(旋转点处的螺栓改变的长度,使得支架绕点旋转,从而改变四边形的形状,以此调节篮板的高度).已知,测得时,点离地面的高度为.调节伸缩臂,将由调节为,判断点离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:)
【答案】点离地面的高度升高了,升高了.
【解析】如图,延长与底面交于点,过作于,则四边形为矩形,可得,证明四边形是平行四边形,可得,当时,则,此时,,,当时,则,,从而可得答案.
【详解】如图,延长与底面交于点,过作于,则四边形为矩形,
∴,
∵,,
∴四边形是平行四边形,
∴,
当时,则,
此时,,
∴,
当时,则,
∴,
而,,
∴点离地面的高度升高了,升高了.
【点睛】本题考查是平行四边形的判定与性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.
9. (2023辽宁本溪)暑假期间,小明与小亮相约到某旅游风景区登山,需要登顶高的山峰,由山底A处先步行到达处,再由处乘坐登山缆车到达山顶处.已知点A,B.D,E,F在同一平面内,山坡的坡角为,缆车行驶路线与水平面的夹角为(换乘登山缆车的时间忽略不计)
(1)求登山缆车上升的高度;
(2)若步行速度为,登山缆车的速度为,求从山底A处到达山顶处大约需要多少分钟(结果精确到)
(参考数据:)
【答案】(1)登山缆车上升的高度;
(2)从山底A处到达山顶处大约需要.
【解析】【分析】(1)过B点作于C,于E,则四边形是矩形,在中,利用含30度的直角三角形的性质求得的长,据此求解即可;
(2)在中,求得的长,再计算得出答案.
【详解】
(1)解:如图,过B点作于C,于E,则四边形是矩形,
在中,,,
∴,
∴,
答:登山缆车上升的高度;
(2)解:在中,,,
∴,
∴从山底A处到达山顶处大约需要:

答:从山底A处到达山顶处大约需要.
【点睛】此题主要考查了解直角三角形的应用,正确掌握直角三角形的边角关系是解题关键.
10. 超速容易造成交通事故.高速公路管理部门在某隧道内的两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且在同一直线上.点、点到的距离分别为,且,在处测得点的俯角为,在处测得点的俯角为,小型汽车从点行驶到点所用时间为.
(1)求两点之间的距离(结果精确到);
(2)若该隧道限速80千米/小时,判断小型汽车从点行驶到点是否超速?并通过计算说明理由.(参考数据:)
【答案】(1) (2)小型汽车从点行驶到点没有超速.
【解析】【分析】(1)证明四边形为矩形,可得,结合,,,可得,,再利用线段的和差关系可得答案;
(2)先计算小型汽车的速度,再统一单位后进行比较即可.
【小问1详解】
解:∵点、点到的距离分别为,
∴,,而,
∴,
∴四边形为矩形,
∴,
由题意可得:,,,
∴,,

【小问2详解】
∵小型汽车从点行驶到点所用时间为.
∴汽车速度为,
∵该隧道限速80千米/小时,
∴,
∵,
∴小型汽车从点行驶到点没有超速.
【点睛】本题考查的是解直角三角形的应用,理解俯角的含义,熟练的运用锐角三角函数解题是关键.
11. 为了美化环境,提高民众的生活质量,市政府在三角形花园边上修建一个四边形人工湖泊,并沿湖泊修建了人行步道.如图,点在点的正东方向170米处,点在点的正北方向,点都在点的正北方向,长为100米,点在点的北偏东方向,点在点的北偏东方向.
(1)求步道的长度.
(2)点处有一个小商店,某人从点出发沿人行步道去商店购物,可以经点到达点,也可以经点到达点,请通过计算说明他走哪条路较近.结果精确到个位)(参考数据:)
【答案】(1)200米
(2)这条路较近,理由见解析
【解析】【分析】(1)根据矩形的性质和锐角三角函数中的正弦值即可求出答案.
(2)根据矩形的性质和锐角三角函数中的正切值、余弦值分别求出和的长度,比较和即可求出答案.
【小问1详解】
解:由题意得,过点作垂直的延长线于点,如图所示,
点在点的正东方向170米处,点在点的正北方向,点都在点的正北方向,
,,


为矩形.
.
米,
米.
在中,米.
故答案为:200米.
【小问2详解】
解:这条路较近,理由如下:
,,
.
米,,
在中,米.
米.
为矩形,米,
米.
在中,米.
米.
结果精确到个位,
米.
米.
.
从这条路较近.
故答案为:这条路较近.
【点睛】本题考查了解直角三角形的实际应用,涉及到锐角三角函数正弦、余弦、正切,矩形的性质,解题的关键在于构建直角三角形利用三角函数求边长.
12.(2023湖北鄂州) 鄂州市莲花山是国家级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为;接着他沿自动扶梯到达扶梯顶端D点,测得点A和点D的水平距离为15米,且;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,,).
(1)求自动扶梯长度;
(2)求大型条幅的长度.(结果保留根号)
【答案】(1)25米 (2)米
【解析】【分析】(1)过D作于M,由可得,求出的长,利用勾股定理即可求解;
(2)过点D作于N,则四边形是矩形,得,,由已知计算得出的长度,解直角三角形得出的长度,在中求得的长度,利用线段的和差,即可解决问题.
【详解】(1)过D作于M,如图:
在中,,
∵(米),
∴(米),
由勾股定理得(米)
(2)如图,过点D作于N,
∵,
∴四边形是矩形,
∴(米),(米),
由题意,(米),
∵,
∴,
∴(米),(米),
由题意,,(米),
∴,
∴(米),
∴米
【点睛】本题考查了解直角三角形的应用一仰角俯角问题、勾股定理、矩形的判定与性质等知识,熟练掌握锐角三角函数定义,正确作出辅助线构造直角三角形是解题的关键.
13. (2023湖南郴州) 某次军事演习中,一艘船以的速度向正东航行,在出发地测得小岛在它的北偏东方向,小时后到达处,测得小岛在它的北偏西方向,求该船在航行过程中与小岛的最近距离(参考数据:,.结果精确到).
【答案】该船在航行过程中与小岛的最近距离.
【解析】【分析】过点作,垂足为,先在中,利用三角函数求出与的关系,然后在中,利用锐角三角函数的定义求出与的关系,从而利用线段的和差关系进行计算,即可解答;
【详解】过点作,垂足为,
解∶∵,,,,,
∴,,,
在中,,即,
∴,
在中,,即,
∴,
∴,
∴(),
∴该船在航行过程中与小岛的最近距离.
【点睛】主要考查了与方位角有关的解直角三角形,作出相应辅助线构造直角三角形是解题的关键.
14. (2023湖北天门)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形,斜面坡度是指坡面的铅直高度与水平宽度的比.已知斜坡长度为20米,,求斜坡的长.(结果精确到米)
(参考数据:)
【答案】斜坡的长约为10米
【解析】【分析】过点作于点,在中,利用正弦函数求得,在中,利用勾股定理即可求解.
【详解】过点作于点,则四边形是矩形,
在中,,

∴.
∵,
∴在中,(米).
答:斜坡的长约为10米.
【点睛】此题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录