专题20 综合实践与探究(含动态及图形变换)问题(原卷版+解析版)

文档属性

名称 专题20 综合实践与探究(含动态及图形变换)问题(原卷版+解析版)
格式 zip
文件大小 3.8MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-04-01 12:40:30

文档简介

中小学教育资源及组卷应用平台
2024年数学中考三轮冲刺必考解答题20个专题专练(全国通用)
专题20 综合实践与探究问题
1.(2023甘肃兰州) 综合与实践
问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在和上分别取点C和D,使得,连接,以为边作等边三角形,则就是的平分线.
请写出平分的依据:____________;
类比迁移:
(2)小明根据以上信息研究发现:不一定必须是等边三角形,只需即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在的边,上分别取,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线是的平分线,请说明此做法的理由;
拓展实践:
(3)小明将研究应用于实践.如图4,校园两条小路和,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)
2. (2023福建)如图1,在中,是边上不与重合的一个定点.于点,交于点.是由线段绕点顺时针旋转得到的,的延长线相交于点.
(1)求证:;
(2)求的度数;
(3)若是的中点,如图2.求证:.
3. (2023甘肃兰州)在平面直角坐标系中,给出如下定义:为图形上任意一点,如果点到直线的距离等于图形上任意两点距离的最大值时,那么点称为直线的“伴随点”.
例如:如图1,已知点,,在线段上,则点是直线:轴的“伴随点”.
(1)如图2,已知点,,是线段上一点,直线过,两点,当点是直线的“伴随点”时,求点的坐标;
(2)如图3,轴上方有一等边三角形,轴,顶点在轴上且在上方,,点是上一点,且点是直线:轴的伴随点.当点到轴的距离最小时,求等边三角形的边长;
(3)如图4,以,,为顶点的正方形上始终存在点,使得点是直线:的伴随点.请直接写出的取值范围.
4. (2023甘肃兰州)综合与实践
【思考尝试】
(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边上一点,于点F,,,.试猜想四边形的形状,并说明理由;
【实践探究】
(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形中,E是边上一点,于点F,于点H,交于点G,可以用等式表示线段,,的数量关系,请你思考并解答这个问题;
【拓展迁移】
(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形中,E是边上一点,于点H,点M在上,且,连接,,可以用等式表示线段,的数量关系,请你思考并解答这个问题.
5. (2023广东省)综合与实践
主题:制作无盖正方体形纸盒
素材:一张正方形纸板.
步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;
步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.
猜想与证明:
(1)直接写出纸板上与纸盒上的大小关系;
(2)证明(1)中你发现的结论.
6. (2023大连)综合与实践
问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.
已知,点为上一动点,将以为对称轴翻折.同学们经过思考后进行如下探究:
独立思考:小明:“当点落在上时,.”
小红:“若点为中点,给出与的长,就可求出的长.”
实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:
问题1:在等腰中,由翻折得到.
(1)如图1,当点落在上时,求证:;
(2)如图2,若点为中点,,求的长.
问题解决:小明经过探究发现:若将问题1中的等腰三角形换成的等腰三角形,可以将问题进一步拓展.
问题2:如图3,在等腰中,.若,则求的长.
7. (2023广东省)综合运用
如图1,在平面直角坐标系中,正方形的顶点A在轴的正半轴上,如图2,将正方形绕点逆时针旋转,旋转角为,交直线于点,交轴于点.
(1)当旋转角为多少度时,;(直接写出结果,不要求写解答过程)
(2)若点,求的长;
(3)如图3,对角线交轴于点,交直线于点,连接,将与的面积分别记为与,设,,求关于的函数表达式.
8.(2023贵州省) 如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形中,,过点作射线,垂足为,点在上.
(1)【动手操作】
如图②,若点在线段上,画出射线,并将射线绕点逆时针旋转与交于点,根据题意在图中画出图形,图中的度数为_______度;
(2)【问题探究】
根据(1)所画图形,探究线段与的数量关系,并说明理由;
(3)【拓展延伸】
如图③,若点在射线上移动,将射线绕点逆时针旋转与交于点,探究线段之间的数量关系,并说明理由.
9.(2023河南) 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.
(1)观察发现:如图1,在平面直角坐标系中,过点的直线轴,作关于轴对称的图形,再分别作关于轴和直线对称的图形和,则可以看作是绕点顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.
(2)探究迁移:如图,中,,为直线下方一点,作点关于直线的对称点,再分别作点关于直线和直线的对称点和,连接,,请仅就图的情形解决以下问题:
①若,请判断与的数量关系,并说明理由;
②若,求,两点间的距离.
(3)拓展应用:在(2)的条件下,若,,,连接.当与的边平行时,请直接写出的长.
10.(2023龙东) 如图,在平面直角坐标系中,菱形的边在x轴上,,的长是一元二次方程的根,过点C作x轴的垂线,交对角线于点D,直线分别交x轴和y轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿向终点D运动,动点N从点F以每秒2个单位长度的速度沿向终点E运动.两点同时出发,设运动时间为t秒.
(1)求直线的解析式.
(2)连接,求的面积S与运动时间t的函数关系式.
(3)点N在运动的过程中,在坐标平面内是否存在一点Q.使得以A,C,N,Q为项点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.
11.(2023齐齐哈尔) 综合与实践
数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.
(1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系:______,______;
(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;
(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.则,,之间的数量关系:______;
(4)实践应用:正方形中,,若平面内存在点满足,,则______.
12. 【探究与证明】
折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.
【动手操作】如图1,将矩形纸片对折,使与重合,展平纸片,得到折痕;折叠纸片,使点B落在上,并使折痕经过点A,得到折痕,点B,E的对应点分别为,,展平纸片,连接,,.
请完成:
(1)观察图1中,和,试猜想这三个角的大小关系;
(2)证明(1)中的猜想;
【类比操作】如图2,N为矩形纸片的边上的一点,连接,在上取一点P,折叠纸片,使B,P两点重合,展平纸片,得到折痕;折叠纸片,使点B,P分别落在,上,得到折痕l,点B,P的对应点分别为,,展平纸片,连接,.
请完成:
(3)证明是的一条三等分线.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024年数学中考三轮冲刺必考解答题20个专题专练(全国通用)
专题20 综合实践与探究问题
1.(2023甘肃兰州) 综合与实践
问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在和上分别取点C和D,使得,连接,以为边作等边三角形,则就是的平分线.
请写出平分的依据:____________;
类比迁移:
(2)小明根据以上信息研究发现:不一定必须是等边三角形,只需即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在的边,上分别取,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线是的平分线,请说明此做法的理由;
拓展实践:
(3)小明将研究应用于实践.如图4,校园两条小路和,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)
【答案】(1);(2)证明见解析;(3)作图见解析;
【解析】【分析】(1)先证明,可得,从而可得答案;
(2)先证明,可得,可得是的角平分线;
(3)先作的角平分线,再在角平分线上截取即可.
【详解】(1)∵,,,
∴,
∴,
∴是的角平分线;
故答案为:
(2)∵,,,
∴,
∴,
∴是的角平分线;
(3)如图,点即为所求作的点;

【点睛】本题考查的是全等三角形的判定与性质,角平分线的定义与角平分线的性质,作已知角的角平分线,理解题意,熟练的作角的平分线是解本题的关键.
2. (2023福建)如图1,在中,是边上不与重合的一个定点.于点,交于点.是由线段绕点顺时针旋转得到的,的延长线相交于点.
(1)求证:;
(2)求的度数;
(3)若是的中点,如图2.求证:.
【答案】(1)见解析 (2) (3)见解析
【解析】【分析】(1)由旋转的性质可得,再根据等腰三角形的性质可得,再证明、,即可证明结论;
(2)如图1:设与的交点为,先证明可得,再证明可得,最后运用角的和差即可解答;
(3)如图2:延长交于点,连接,先证明可得,再证可得;进而证明即,再说明则根据直角三角形斜边上的中线等于斜边的一半即可解答.
【详解】(1)解: 是由线段绕点顺时针旋转得到的,









(2)解:如图1:设与的交点为,







又,



(3)解:如图2:延长交于点,连接,



是的中点,

又,





由(2)知,,




,即.



【点睛】本题主要考查三角形内角和定理、平行线的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形及直角三角形的判定与性质等知识点,综合应用所学知识成为解答本题的关键.
3. (2023甘肃兰州)在平面直角坐标系中,给出如下定义:为图形上任意一点,如果点到直线的距离等于图形上任意两点距离的最大值时,那么点称为直线的“伴随点”.
例如:如图1,已知点,,在线段上,则点是直线:轴的“伴随点”.
(1)如图2,已知点,,是线段上一点,直线过,两点,当点是直线的“伴随点”时,求点的坐标;
(2)如图3,轴上方有一等边三角形,轴,顶点在轴上且在上方,,点是上一点,且点是直线:轴的伴随点.当点到轴的距离最小时,求等边三角形的边长;
(3)如图4,以,,为顶点的正方形上始终存在点,使得点是直线:的伴随点.请直接写出的取值范围.
【答案】(1) (2) (3)
【解析】【分析】(1)过点作于点,根据新定义得出,根据已知得出,则,即可求解;
(2)当到轴的距离最小时,点在线段上,设的边长为,以为圆心为半径作圆,当与轴相切时,如图所示,切点为,此时点是直线:轴的伴随点.且点到轴的距离最小,则的纵坐标为,即,是等边三角形,且轴,设交于点,则,得出,根据即可求解;
(3)当四边形是正方形时,,连接并延长交轴于点,直线的解析式为,得出,可得到直线的距离为,则当点与点重合时,当点与点重合时,求得两个临界点时的的值,即可求解.
【详解】(1)如图所示,过点作于点,
∵,,则,点是直线的“伴随点”时,
∴,
∵,,
∴,
∵,
∴,
∴,
∴;
(2)当到轴的距离最小时,
∴点在线段上,
设的边长为,以为圆心为半径作圆,当与轴相切时,如图所示,切点为,此时点是直线:轴的伴随点.且点到轴的距离最小,
则的纵坐标为,即,
∵是等边三角形,且轴,设交于点,则,
∴,
∴,
∵,
∴,
解得:或(舍去)
∴等边三角形的边长为
(3)如图所示,当四边形是正方形时,,连接并延长交轴于点,
∵,,
∴,,
∵,
设直线的解析式为,则
解得
∴直线的解析式为,
∴直线垂直,
当时,
∴,
∵,即得到直线的距离为,
则当点与点重合时,是直线:的伴随点.
此时在上,则,解得:,
当点与点重合时,则过点,此时,解得:,
∴.
【点睛】本题考查了几何新定义,解直角三角形,切线的性质,直线与坐标轴交点问题,正方形的性质,理解新定义是解题的关键.
4. (2023甘肃兰州)综合与实践
【思考尝试】
(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边上一点,于点F,,,.试猜想四边形的形状,并说明理由;
【实践探究】
(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形中,E是边上一点,于点F,于点H,交于点G,可以用等式表示线段,,的数量关系,请你思考并解答这个问题;
【拓展迁移】
(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形中,E是边上一点,于点H,点M在上,且,连接,,可以用等式表示线段,的数量关系,请你思考并解答这个问题.
【答案】(1)四边形是正方形,证明见解析;(2);(3),证明见解析;
【解析】【分析】(1)证明,可得,从而可得结论;
(2)证明四边形是矩形,可得,同理可得:,证明,,,证明四边形是正方形,可得,从而可得结论;
(3)如图,连接,证明,,,,可得,再证明,可得,证明,可得,从而可得答案.
【详解】解:(1)∵,,,
∴,,
∵矩形,
∴,
∴,
∵,
∴,
∴,
∴矩形是正方形.
(2)∵,,,
∴,
∴四边形是矩形,
∴,
同理可得:,
∵正方形,
∴,
∴,
∴,,
∴四边形是正方形,
∴,
∴.
(3)如图,连接,
∵,正方形,
∴,,,
∵,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∴.
【点睛】本题考查的是矩形的判定与性质,正方形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,作出合适的辅助线,构建相似三角形是解本题的关键.
5. (2023广东省)综合与实践
主题:制作无盖正方体形纸盒
素材:一张正方形纸板.
步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;
步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.
猜想与证明:
(1)直接写出纸板上与纸盒上的大小关系;
(2)证明(1)中你发现的结论.
【答案】(1) (2)证明见解析.
【解析】【分析】(1)和均是等腰直角三角形,;
(2)证明是等腰直角三角形即可.
【详解】(1)解:
(2)证明:连接,
设小正方形边长为1,则,,

为等腰直角三角形,
∵,
∴为等腰直角三角形,


【点睛】考查了勾股定理及其逆定理的应用和等腰三角形的性质,熟练掌握其性质是解答此题的关键.
6. (2023大连)综合与实践
问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.
已知,点为上一动点,将以为对称轴翻折.同学们经过思考后进行如下探究:
独立思考:小明:“当点落在上时,.”
小红:“若点为中点,给出与的长,就可求出的长.”
实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:
问题1:在等腰中,由翻折得到.
(1)如图1,当点落在上时,求证:;
(2)如图2,若点为中点,,求的长.
问题解决:小明经过探究发现:若将问题1中的等腰三角形换成的等腰三角形,可以将问题进一步拓展.
问题2:如图3,在等腰中,.若,则求的长.
【答案】(1)见解析;(2);问题2:
【解析】【分析】(1)根据等边对等角可得,根据折叠以及三角形内角和定理,可得,根据邻补角互补可得,即可得证;
(2)连接,交于点,则是的中位线,勾股定理求得,根据即可求解;
问题2:连接,过点作于点,过点作于点,根据已知条件可得,则四边形是矩形,勾股定理求得,根据三线合一得出,根据勾股定理求得的长,即可求解.
【详解】(1)∵等腰中,由翻折得到
∴,,
∵,
∴;
(2)如图所示,连接,交于点,
∵折叠,
∴,,,,
∵是的中点,
∴,
∴,
在中,,
在中,,
∴;
问题2:如图所示,连接,过点作于点,过点作于点,
∵,
∴,,
∵,
∴,
∴,
∴,
又,
∴四边形是矩形,
则,
在中,,,,
∴,
在中,,
∴,
在中,.
【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,矩形的性质与判定,熟练掌握以上知识是解题的关键.
7. (2023广东省)综合运用
如图1,在平面直角坐标系中,正方形的顶点A在轴的正半轴上,如图2,将正方形绕点逆时针旋转,旋转角为,交直线于点,交轴于点.
(1)当旋转角为多少度时,;(直接写出结果,不要求写解答过程)
(2)若点,求的长;
(3)如图3,对角线交轴于点,交直线于点,连接,将与的面积分别记为与,设,,求关于的函数表达式.
【答案】(1) (2) (3)
【解析】【分析】(1)根据正方形的性质及直角三角形全等的判定及性质得出,再由题意得出,即可求解;
(2)过点A作轴,根据勾股定理及点的坐标得出,再由相似三角形的判定和性质求解即可;
(3)根据正方形的性质及四点共圆条件得出O、C、F、N四点共圆,再由圆周角定理及等腰直角三角形的判定和性质得出,,过点N作于点G,交于点Q,利用全等三角形及矩形的判定和性质得出,结合图形分别表示出,,得出,再由等腰直角三角形的性质即可求解.
【详解】(1)∵正方形,
∴,,
∵,
∴,
∴,
∵,
∴,
∵交直线于点,
∴,
∴,
即;
(2)过点A作轴,如图所示:
∵,
∴,
∴,
∵正方形,
∴,,
∴,
∵,
∴,
∴即,
∴;
(3)∵正方形,
∴,
∵直线,
∴,
∴,
∴O、C、F、N四点共圆,
∴,
∴,
∴为等腰直角三角形,
∴,,
过点N作于点G,交于点Q,
∵,
∴,
∵,
∴,
∵,
∴,

∴,
∵,,
∴四边形为矩形,
∴,
∴,

∴,
∵,
∴为等腰直角三角形,
∴,

【点睛】题目主要考查全等三角形、相似三角形及特殊四边形的判定和性质,四点共圆的性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.
8.(2023贵州省) 如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形中,,过点作射线,垂足为,点在上.
(1)【动手操作】
如图②,若点在线段上,画出射线,并将射线绕点逆时针旋转与交于点,根据题意在图中画出图形,图中的度数为_______度;
(2)【问题探究】
根据(1)所画图形,探究线段与的数量关系,并说明理由;
(3)【拓展延伸】
如图③,若点在射线上移动,将射线绕点逆时针旋转与交于点,探究线段之间的数量关系,并说明理由.
【答案】(1)作图见解析;135
(2);理由见解析
(3)或;理由见解析
【解析】【分析】(1)根据题意画图即可;先求出,根据,求出;
(2)根据,,证明、P、B、E四点共圆,得出,求出,根据等腰三角形的判定即可得出结论;
(3)分两种情况,当点P在线段上时,当点P在线段延长线上时,分别画出图形,求出之间的数量关系即可.
【详解】(1)如图所示:
∵,
∴,
∵,
∴,
∴;
故答案:135.
(2);理由如下:
连接,如图所示:
根据旋转可知,,
∵,
∴、P、B、E四点共圆,
∴,
∴,
∴,
∴.
(3)当点P在线段上时,连接,延长,作于点F,如图所示:
根据解析(2)可知,,
∵,
∴,
∴,
∵,
∴,
∴,
∵,,
∴为等腰直角三角形,
∴,
∵为等腰直角三角形,
∴,
即;
当点P在线段延长线上时,连接,作于点F,如图所示:
根据旋转可知,,
∵,
∴、B、P、E四点共圆,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∵,,
∴为等腰直角三角形,
∴,
即;
综上分析可知,或.
【点睛】本题主要考查了等腰三角形的判定和性质,三角形全等的判定和性质,圆周角定理,四点共圆,等腰直角三角形的性质,解题的关键是作出图形和相关的辅助线,数形结合,并注意分类讨论.
9.(2023河南) 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.
(1)观察发现:如图1,在平面直角坐标系中,过点的直线轴,作关于轴对称的图形,再分别作关于轴和直线对称的图形和,则可以看作是绕点顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.
(2)探究迁移:如图,中,,为直线下方一点,作点关于直线的对称点,再分别作点关于直线和直线的对称点和,连接,,请仅就图的情形解决以下问题:
①若,请判断与的数量关系,并说明理由;
②若,求,两点间的距离.
(3)拓展应用:在(2)的条件下,若,,,连接.当与的边平行时,请直接写出的长.
【答案】(1),.
(2)①,理由见解析;②
(3)或
【解析】【分析】(1)观察图形可得与关于点中心对称,根据轴对称的性质可得即可求得平移距离;
(2)①连接,由对称性可得,,进而可得,即可得出结论;
②连接分别交于两点,过点作,交于点,由对称性可知:且,得出,证明四边形是矩形,则,在中,根据,即可求解;
(3)分,,两种情况讨论,设,则,先求得,勾股定理求得,进而表示出,根据由(2)②可得,可得,进而建立方程,即可求解.
【详解】(1)∵关于轴对称的图形,与关于轴对称,
∴与关于点中心对称,
则可以看作是绕点顺时针旋转得到的,旋转角的度数为
∵,
∴,
∵,关于直线对称,
∴,
即,
可以看作是向右平移得到的,平移距离为个单位长度.
故答案为:,.
(2)①,理由如下,
连接,
由对称性可得,,
∴,
②连接分别交于两点,过点作,交于点,
由对称性可知:且,
∵四边形为平行四边形,

∴三点共线,
∴,
∵,
∴,
∴四边形是矩形,
∴,
在中,,
∵,
∴,

(3)设,则,
依题意,,
当时,如图所示,过点作于点,

∵,,
∴,
∴,则,
在中,,
∴,则,

在中,,则,,
在中,,


由(2)②可得,


∴,
解得:;
如图所示,若,则,
∵,则,
则,
∵,,
∵,
∴,
解得:,
综上所述,的长为或.
【点睛】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.
10.(2023龙东) 如图,在平面直角坐标系中,菱形的边在x轴上,,的长是一元二次方程的根,过点C作x轴的垂线,交对角线于点D,直线分别交x轴和y轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿向终点D运动,动点N从点F以每秒2个单位长度的速度沿向终点E运动.两点同时出发,设运动时间为t秒.
(1)求直线的解析式.
(2)连接,求的面积S与运动时间t的函数关系式.
(3)点N在运动的过程中,在坐标平面内是否存在一点Q.使得以A,C,N,Q为项点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.
【答案】(1);
(2);
(3)存在,点Q的坐标是或.
【解析】【分析】(1)过点A作于H,解方程可得,然后解直角三角形求出、和的长,得到点A、D的坐标,再利用待定系数法求出解析式即可;
(2)首先证明是等边三角形,求出,然后分情况讨论:①当点N在上,即时,过点N作于P,②当点N在上,即时,过点N作于T,分别解直角三角形求出和,再利用三角形面积公式列式即可;
(3)分情况讨论:①当是直角边时,则,过点N作于K,首先求出,然后解直角三角形求出和,再利用平移的性质得出点Q的坐标;②当是对角线时,则,过点N作于L,证明,可得,然后解直角三角形求出,再利用平移的性质得出点Q的坐标.
【详解】(1)解方程得:,,
∴,
∵四边形是菱形,,
∴,,
∴,
∴,
过点A作于H,
∵,
∴,,
∴,
设直线的解析式为,
代入,得:,
解得:,
∴直线的解析式为;
(2)由(1)知在中,,,
∴,,
∵直线与 y轴交于点E,
∴,
∴,
∴是等边三角形,
∴,,
∴,
∴,
①当点N在上,即时,
由题意得:,,
过点N作于P,
则,
∴;
②当点N在上,即时,
由题意得:,,
过点N作于T,
则,
∴;
综上,;
(3)存在,分情况讨论:
①如图,当是直角边时,则,过点N作于K,
∵,,
∴,,
∴,
∴,
∴,,
∴将点N向左平移个单位长度,再向下平移个单位长度得到点C,
∴将点A向左平移个单位长度,再向下平移个单位长度得到点Q,
∵,
∴;
②如图,当是对角线时,则,过点N作于L,
∵,,
∴是等边三角形,
∴,
∴,
∴,
∴,
∴将点C向右平移3个单位长度,再向上平移个单位长度得到点N,
∴将点A向右平移3个单位长度,再向上平移个单位长度得到点Q,
∵,
∴;
∴存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形,点Q的坐标是或.
【点睛】考查了解一元二次方程,菱形的性质,解直角三角形,待定系数法的应用,等边三角形的判定和性质,含直角三角形的性质,二次函数的应用,矩形的判定和性质以及平移的性质等知识,灵活运用各知识点,作出合适的辅助线,熟练掌握数形结合思想与分类讨论思想的应用是解题的关键.
11.(2023齐齐哈尔) 综合与实践
数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.
(1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系:______,______;
(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;
(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.则,,之间的数量关系:______;
(4)实践应用:正方形中,,若平面内存在点满足,,则______.
【答案】(1),
(2),,证明见解析
(3)
(4)或
【解析】【分析】(1)根据已知得出,即可证明,得出,,进而根据三角形的外角的性质即可求解;
(2)同(1)的方法即可得证;
(3)同(1)的方法证明,根据等腰直角三角形的性质得出,即可得出结论;
(4)根据题意画出图形,连接,以为直径,的中点为圆心作圆,以点为圆心,为半径作圆,两圆交于点,延长至,使得,证明,得出,勾股定理求得,进而求得,根据相似三角形的性质即可得出,勾股定理求得,进而根据三角形的面积公式即可求解.
【详解】(1)∵,
∴,
又∵,,
∴,
∴,
设交于点,

∴,
故答案为:,.
(2)结论:,;
证明:∵,
∴,即,
又∵,,

∴,
∵,,
∴,
∴,
(3),理由如下,
∵,
∴,
即,
又∵和均为等腰直角三角形
∴,
∴,
∴,
在中,,
∴,
∴;
(4)如图所示,
连接,以为直径,的中点为圆心作圆,以点为圆心,为半径作圆,两圆交于点,
延长至,使得,
则是等腰直角三角形,
∵,
∴,
∵,

∴,
∴,
∵,
在中,,


过点作于点,
设,则,
中,,
在中,


解得:,则,
设交于点,则是等腰直角三角形,

在中,


又,


∴,

∴,
在中,
∴,
综上所述,或
故答案为:或.
【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,正方形的性质,勾股定理,直径所对的圆周角是直角,熟练运用已知模型是解题的关键.
12. 【探究与证明】
折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.
【动手操作】如图1,将矩形纸片对折,使与重合,展平纸片,得到折痕;折叠纸片,使点B落在上,并使折痕经过点A,得到折痕,点B,E的对应点分别为,,展平纸片,连接,,.
请完成:
(1)观察图1中,和,试猜想这三个角的大小关系;
(2)证明(1)中的猜想;
【类比操作】如图2,N为矩形纸片的边上的一点,连接,在上取一点P,折叠纸片,使B,P两点重合,展平纸片,得到折痕;折叠纸片,使点B,P分别落在,上,得到折痕l,点B,P的对应点分别为,,展平纸片,连接,.
请完成:
(3)证明是的一条三等分线.
【答案】(1) (2)见详解 (3)见详解
【解析】【分析】(1)根据题意可进行求解;
(2)由折叠的性质可知,,然后可得,则有是等边三角形,进而问题可求证;
(3)连接,根据等腰三角形性质证明,根据平行线的性质证明,证明,得出,即可证明.
【详解】(1)由题意可知;
(2)证明:由折叠的性质可得:,,,,
∴,,
∴是等边三角形,
∵,,
∴,
∵四边形是矩形,
∴,
∴,
∴;
(3)证明:连接,如图所示:
由折叠的性质可知:,,,
∵折痕,,
∴,
∵四边形为矩形,
∴,
∴,
∵,
∴,
∴,
∵在和中,

∴,
∴,
∴,
∴,
∴是的一条三等分线.
【点睛】本题主要考查折叠的性质、线段垂直平分线的性质、等腰三角形的性质与判定及矩形的性质,三角形全等的判定和性质,作出辅助线,熟练掌握折叠的性质,证明,是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录