(共11张PPT)
第五章 一元一次方程
第4课 求解一元一次方程(2)
去括号
北师大版七年级上册
本套资料以教育部颁布的《数学课程标准(2022)版》为依据,结合新中考改革研究,立足北师大版本教材开发,通过课堂流程的优化设计,内容的层次设计,循序渐进,让不同层次的学生都学有所问,问有所探,探有所获,能力都有不同层次的提高,思维不断生长。
新授课通过激活思维、探究新知、双基巩固、综合运用、分层反馈五个环节来完成。
资料简介
第一环节 激活思维 通过回顾与本节新知有关的旧知或熟悉的生活情境,唤醒、激活学生的旧知,为新知生成奠定基础,为知识的形成提供情境。
第二环节 探究新知 通过一系列问题,引领学生通过自主、合作、探究的方式,在解决问题串的过程中,生成新知,积累基本活动经验,提高分析问题和解决问题的能力。
第三环节 双基巩固 通过典型例题,及时巩固基础知识与基本技能,为学生初步应用新知解决问题积累经验。
第四环节 综合运用 以本节知识为核心,设计一道综合题,提高学生综合运用知识的能力,发散思维,渗透数学思想方法。
第五环节 分层反馈 通过由易到难的当堂练习或检测,及时反馈学生掌握情况,给教师课后针对辅导与布置课后作业的量和难度提供数据参考。
五环导学
化简:去括号
(1)+(x+3)=%// //% ;
(2)-(y-3)=%// //% ;
(3)+3(2x-1)=%// //% ;
(4)-2(2a+3)=%// //% ;
(5)1+2(-y+3)=%// //% ;
(6)8-3(-2x+3)=%// //% .
x+3
3-y
6x-3
-4a-6
-2y+7
6x-1
【探究1】看图,回答下列问题:
(1)小明买东西共用去%////%元;
(2)如果我们用未知数x表示1听果
奶的价钱,那么一听可乐的价格
是%// //%元;
(3)请根据图的意思列出方程:
%// //%;
(4)解方程:4(x+0.5)+x=7.
解:去括号,得:%// //% ,
移项,得:%// //% ,
合并同类项,得:%// //% ,
方程两边同时%// //%,得:%// //%.
7
(x+0.5)
4(x+0.5)+x=7
4x+2+x=7
4x+x=7-2
5x=5
除以5
x=1
【问题2】解方程的步骤?
去括号、移项、合并同类项、未知数系数化为1
【例题1】解方程:
(1)-2(x-1)=4; (2)2(x-3)-6=0.
解:去括号,得-2x+2=4.
移项,得-2x=4-2.
化简,得-2x=2.
方程左右两边同除以-2,
得x=-1.
解:去括号,得2x-6-6=0.
化简,得2x-12=0.
移项,得2x=12.
方程两边同除以2,
得x=6.
【例题2】一个两位数,十位数字是个位数字的两倍,将两个数字对调后得到的两位数比原来的数小36,求这个两位数.
解:设个位数字为x,则十位数字为2x,
由题意得:10×2x+x-(10x+2x)=36,
解得:x=4,则2x=8,
答:原两位数是84.
解:去括号,得5x+40-5=0.
移项,得5x=5-40.
合并同类项,得5x=-35.
方程两边同除以5,得x=-7.
解:去括号,得4x-60+3x=3.
移项,合并同类项,得7x=63.
方程两边同时除以7,得x=9.
1.解下列方程:
(1)5(x+8)-5=0; (2)2-(1-x)=-2;
(3)4x-3(20-x)=3; (4)-2(x-2)=12;
解:去括号,得2-1+x=-2.
移项,得x=-2-2+1.
合并同类项,得x=-3.
解:方程两边同时除以-2,
得x-2=-6.
移项,合并同类项,
得x=-4.
(5)12(2-3x)=4x+4;
(6)2(2x-1)-1=3(2x-1)+3.
解:去括号,得24-36x=4x+4.
移项,得36x+4x=24-4.
合并同类项,得40x=20.
方程两边同时除以40,得x=.
解:去括号,得4x-2-1=6x-3+3.
移项,合并同类项,得2x=-3.
方程两边同时除以2,得x=.
2.有一个两位数,十位数字比个位数字的2倍多1,将两个数字对调后,所得的两位数字比原两位数字小36,求原两位数字.
解:设个位数字为x,则十位数字为2x+1,
由题意得:10(2x+1)+x-(10x+2x+1)=36,
解得:x=3,
则2x+1=7,
答:原两位数是73.
3.(★)规定=ad-bc,如:=2×4-5×6=-22,试解=25.
解:2×5-(-4)×(3-x)=25,解得x=-.