人教版七年级数学上册:1.5 有理数的乘方 教学设计(4课时)

文档属性

名称 人教版七年级数学上册:1.5 有理数的乘方 教学设计(4课时)
格式 zip
文件大小 23.0KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2015-10-16 20:41:40

图片预览

文档简介

1.5 有理数的乘方
第1课时 乘方
教学目标:
1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.
2.已知一个数,会求出它的正整数指数幂,渗透转化思想.
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.
教学过程设计:
(一)创设情境,导入新课
提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的 怎样表示
a·a记作a2,读作a的平方(或a的2次 ( http: / / www.21cnjy.com )方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)
(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个
1个细胞30分钟分裂成2个,1个小时后分裂 ( http: / / www.21cnjy.com )成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.
(二)合作交流,解读探究
一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.
说明:(1)举例94来说明概念及读法.
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.
(4)乘方是一种运算,幂是乘方运算的结果.
(三)应用迁移,巩固提高
【例1】(1)(-4)3;(2)(-2)4;(3)-24.
点拨:(1)计算时仍然是要先确定符号,再确定绝对值.
(2)注意(-2)4与-24的区别.
根据有理数的乘法法则得出有理数乘方的符号规律:
负数的奇次幂是负数,负数的偶次幂是正数;
正数的任何次幂都是正数,0的任何正整数次幂都是0.
【例2】计算:
(1)()3;     (2)(-)3;
(3)(-)4; (4)-;
(5)-22×(-3)2; (6)-22+(-3)2.
(四)总结反思,拓展升华
1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.
2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.
乘方的含义:(1)表示一种运算;(2)表示 ( http: / / www.21cnjy.com )运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.
乘方的符号法则:(1)正数 ( http: / / www.21cnjy.com )的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.
(五)课堂跟踪反馈
1.课本P42练习第1、2题.
2.补充练习
(1)在(-2)6中,指数为    ,底数为    .
(2)在-26中,指数为    ,底数为    .
(3)若a2=16,则a=    .
(4)平方等于本身的数是    ,立方等于本身的数是    .
(5)下列说法中正确的是(  )
A.平方得9的数是3
B.平方得-9的数是-3
C.一个数的平方只能是正数
D.一个数的平方不能是负数
(6)下列各组数中,不相等的是(  )
A.(-3)2与-32 B.(-3)2与32
C.(-2)3与-23 D.|2|3与|-23|
(7)下列各式中计算不正确的是(  )
A.(-1)2003=-1
B.-12002=1
C.(-1)2n=1(n为正整数)
D.(-1)2n+1=-1(n为正整数)
(8)下列各数表示正数的是(  )
A.|a+1| B.(a-1)2
C.-(-a) D.||
第2课时 有理数的混合运算
教学目标:
1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.
2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.
教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.
教学难点:有理数的混合运算.
教学过程:
一、有理数的混合运算顺序:
1.先乘方,再乘除,最后加减.
2.同级运算,从左到右进行.
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
【例1】计算:
(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);
(2)1-×[3×(-)2-(-1)4]+÷(-)3.
强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.
【例2】观察下面三行数:
-2,4,-8,16,-32,64,…;①
0,6,-6,18,-30,66,…;②
-1,2,-4,8,-16,32,….③
(1)第①行数按什么规律排列
(2)第②③行数与第①行数分别有什么关系
(3)取每行数的第10个数,计算这三个数的和.
【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.
二、课堂练习
1.计算:
(1)|-|2+(-1)101-×(0.5-)÷;
(2)1÷(1)×(-)÷(-12);
(3)(-2)3+3×(-1)2-(-1)4;
(4)[2-(-)3]-(-)+(-)×(-1)2;
(5)5÷[-(2-2)]×6.
2.若|x+2|+(y-3)2=0,求的值.
3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少 若a=-1,则A等于多少
三、课时小结
1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.
2.在运算中要注意像-72与(-7)2等这类式子的区别.
第3课时 科学记数法
教学目标:
1.利用10的乘方进行科学记数,会用科学记数法表示大于或等于10的数.
2.会解决与科学记数法有关的实际问题.
教学重点:会用科学记数法表示大于或等于10的数.
教学难点:正确使用科学记数法表示数.
教学过程:
一、科学记数法
用乘方的形式,有时可方便地来表示日常生活中遇到的一些较大的数,如:
太阳的半径约696 000千米;
富士山可能爆发,这将造成至少25 000亿日元的损失;
光的速度大约是300 000 000米/秒;
全世界人口数大约是6 100 000 000.
这样的大数,读、写都不方便.
考虑到10的乘方有如下特点:
102=100,103=1000,104=10000,…
一般地,10的n次幂等于10……0(在1的后面有n个0),这样就可用10的幂表示一些大数,如,
6 100 000 000=6.1×1 000 000 000=6.1×109.
像上面这样,把一个大于10或等于10的数记成a×10n的形式(其中a是整数数位只有一位的数),这种记数法叫做科学记数法.
科学记数法也就是把一个数表示成a×10n的形式,其中1≤a<10,n的值等于整数部分的位数减1.
二、例题
【例】用科学记数法表示下列各数:
(1)1 000 000;
(2)57 000 000;
(3)123 000 000 000.
强调:用科学记数法表示一个数时,首先要确定这个数的整数部分的位数.
注意:一个数的科学记数法中,10的指数比原数的整数位数少1,如原数是6位整数,指数就是5.
说明:在实际生活中有非常大的数,同样也 ( http: / / www.21cnjy.com )有非常小的数.本节课强调的是大数可以用科学记数法来表示,实际上非常小的数也同样可以用科学记数法表示,如1纳米是10-9米,意思是1米是1纳米的10亿倍,也就是说1纳米是1米的十亿分之一.用表达式表示为1纳米=10-9米,或者1纳米=米=10-9米.
  三、课堂练习
1.用科学记数法表示下列各数:
(1)30060;
(2)15 400 000;
(3)123000.
2.下列用科学记数法表示的数,原来各是什么数
(1)2×105;
(2)7.12×103;
(3)8.5×106.
3.已知长方形的长为7×105mm,宽为5×104mm,求长方形的面积.
4.把199 000 000用科学记数法写成1.99×10n-3的形式,求n的值.
5.课本P45练习第1、2、3题.
  四、课时小结
本节课你有什么收获
第4课时 近似数
教学目标:
1.理解精确度的意义.
2.要准确地说出精确位及按要求进行四舍五入取近似数.
教学重点:近似数、精确度的意义.
教学难点:按给定的精确度求一个数的近似数.
教学过程:
一、近似数的定义
我们常会遇到这样的问题:
(1)七年级(4)班有42名同学;
(2)每个三角形都有3个内角.
这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:
(3)我国的领土面积约为960万平方千米;
(4)王强的体重是约49千克.
我们把像960万、49这些与实际数很接近的数称为近似数.
在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是求精确度的问题.
二、精确度
我们都知道:π=3.1415926……
我们对这个数取近似数:
如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;
如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);
如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01).
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.
像上面我们取3.142为π的近似数,它精确到千分位(即精确到0.001).
三、例题
【例1】按括号内的要求,用四舍五入法对下列各数取近似数:
(1)0.015 8(精确到0.001);
(2)30 435(精确到万位);
(3)1.804(精确到十分位);
(4)1.804(精确到个位).
【例2】 下列由四舍五入法得到的近似数,各精确到哪一位
(1)132.4;  (2)0.0572;  (3)2.40万.
四、课堂练习
1.请你列举出生活中准确值和近似值的实例.
2.下列各题中的数,哪些是精确数 哪些是近似数
(1)东北师大附中共有98个教学班;
(2)我国有13亿人口.
3.用四舍五入法,按括号里的要求对下列各数取近似值:
(1)0.65148(精确到千分位);
(2)1.5673(精确到0.01);
(3)0.03097(精确到千分位);
(4)75460(精确到万位);
(5)909900(精确到万位).
4.下列由四舍五入法得到的近似数,各精确到哪一位
(1)54.8;  (2)0.00204;  (3)3.6万.