5 应用二元一次方程组——里程碑上的数
教学目标
【知识与技能】
用二元一次方程组解决实际问题.
【过程与方法】
经历和体验方程组解决实际问题的过程,了解应用二元一次方程组解决实际问题的一般步骤.
【情感、态度与价值观】
通过由具体实例的分析、思考与合作学习的过程,培养学生理论联系实际的辩证唯物主义思想,以及善于分析问题、利用知识解决实际问题的良好习惯.
教学重难点
【重点】
让学生经历和体验用二元一次方程组解决实际问题的过程,会列方程组解决实际问题.
【难点】
在实际问题中找等量关系,列方程组.
教学过程
一、讲授新课
1.例题讲解.
【例1】两个两位数的和是68,在较大的两 ( http: / / www.21cnjy.com )位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.
分析:设较大的两位数为x,较小的两位数为y.
在较大数的右边接着写较小的数,所写的数可表示为 .
在较大数的左边写上较小的数,所写的数可表示为 .
【答案】设较大的两位数为x,较小的两位数y,根据题意,得
化简,得
即
解这个方程组,得
所以这两个两位数分别是45和23.
【例2】用如图所示的长方形和正方形纸板制作 ( http: / / www.21cnjy.com )侧面和底面,做成如图所示的竖式和横式两种无盖纸盒,现在仓库里有1000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完
( http: / / www.21cnjy.com )
(1)能不能用刚才合作学习中学到的知识解决实际问题
(2)让学生分析题中的已知条件和未知条件,并问:如何找等量关系.
(3)给学生提供表格帮助学生分析数量关系, ( http: / / www.21cnjy.com )让学生得出等量关系:竖式纸盒中正方形纸板的张数+横式纸盒中正方形纸板的张数=1000张,竖式纸盒中长方形的纸板的张数+横式纸盒中长方形纸板的张数=2000张.
(4)师生共同完成解题过程.
【答案】设做竖式纸盒x个,横式纸盒y个,根据题意,得
①×4-②得,5y=2000,∴y=400,
把y=400代入①,得x+800=1000,∴x=200,
∴方程组的解为
经检验,这个解满足方程组,且符合题意.
答:做竖式纸盒200个,横式纸盒400个,恰好将库存的纸板用完.
2.合作讨论,应用二元一次方程组解决实际问题的基本步骤:
理解问题——制作计划——执行计划——回顾反思(多媒体显示).
其中理解问题指审题,理清已 ( http: / / www.21cnjy.com )知和未知,分析数量关系;制订计划是指考虑如何根据等量关系设元,列出方程组,执行计划是指列出方程计算求解,得到原数;回顾反思是指回顾解题过程,检验答案的正确性以及是否符合题意.
归纳:本题的等量关系不是很明显,可通过列表格的形式帮助我们理解问题并制订计划.
二、课堂小结
师生共同完成.
1.应用二元一次方程组解决实际问题的基本步骤.
2.列二元一次方程组的关键是什么
3.有什么新收获