人教版五年级数学下册2.3、3的倍数的特征教案(共2课时)

文档属性

名称 人教版五年级数学下册2.3、3的倍数的特征教案(共2课时)
格式 zip
文件大小 87.6KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2015-10-19 09:29:41

文档简介


3的倍数的特征
第1课时
教学内容
课本第10页。
教 学
目 标
知识与技能:经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
过程与方法:,观察,自主探究,合作交流,培养学生的观察力,推理能力,干扩能力。
情感、态度与价值观:在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重点
是3的倍数的数的特征。
教学难点
理解3的倍数的数的特征。。
教学方法
启发式教学法、指导自主学习法。
教学准备
多媒体。
教学过程设计
设计意图
教学过程
一、提出课题,寻找3的特征。
  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p10做一做
四、课堂小结:
这节课你有什么收获
本课作业
数P12页部分练习。
板书设计

两数之和的奇偶性
第1课时
教学内容
两数之和的奇偶性
教学
目标
知识与技能:能正确判断两数之和的奇偶性,并利用两数之和的奇偶性解决简单的实际问题;初步感知两数之积的奇偶性。
过程与方法:能运用所学知识和已有的经验,通过自主探索、合作交流、反思验证寻求两数之和的奇偶性的判断方法。
情感、态度与价值观:在探索的过程中经历“尝试、验证”的过程,体会用“数形结合”解释数学问题。
教学重点
正确判断两数之和的奇偶性。
教学难点
自主探索判断两数之和的奇偶性的方法,并验证自己的结论。
教学方法
启发式教学法、指导自主学习法。
教学准备
多媒体。
教学过程设计
设计意图
教学过程
一、激趣导入
快乐大转盘游戏:转盘上1-20数,一个同学转,指针指向那个数,
就加上本身。和如果是奇数就的大奖。
学生尝试
怎么没人得奖?
二、探索与猜想
(一)阅读与理解
课件出示教材第15页例2。
1.想一想,题目中的问题可以怎样表示?
引导学生整理和改编问题:
(二)自主探究,合作交流
1.探究“奇数+偶数”的和的奇偶性
(1)我们先来探究“奇数+偶数”的和是奇数还是偶数?你有什么办法?
(2)独立思考,展开交流。
方法一:列举法。
我们可以随意找几个奇数和偶数,加起来看一看,结果是奇数还是偶数?
奇数:5, 7, 9, 11,…
偶数:8, 12, 20, 24,…
奇数+偶数:5+8=13,7+12=19,9+20=29,11+24=35,…
和都是奇数,所以奇数+偶数=奇数。
这个结论正确吗?不能确定怎么办?我们能不能尝试其他方法呢?
方法二:图示法(用奇数和偶数的特征来判断)。
因为奇数除以2余1,偶数除以2没有余数,所以奇数加偶数的和除以2仍余1,所以奇数+偶数=奇数。
大家如果理解有困难的话,我们不妨用画图来表示:
2.探究“奇数+奇数”“偶数+偶数”的和的奇偶性
(1)有了刚才的“列举法”和“图示法”,你能自己判断“奇数+奇数”“偶数+偶数”的和是奇数还是偶数吗?
(2)独立思考,汇报交流。
(三)回顾与反思
1.刚才得出的结论正确吗?还有其他方法吗?
(1)我们可以找一些大数再试试。
(四)练习与拓展
1.课件出示教材第16页练习四第4小题。
(1)猜一猜。
(2)独立思考,交流想法。
预设:奇数×奇数,就是奇数个奇数相加,所以和仍然是奇数;奇数×偶数,就是偶数个奇数相加,所以得到的是偶数;偶数×偶数,就是偶数个偶数相加,和也是偶数。如图:
(五)全课总结,交流收获
这节课我们学了哪些知识?你有什么收获?
列举法是同学们较容易想到的方法,但这样下结论还为时过早。在讨论的基础上,教师引导学生用图示表示奇数和偶数相加的特征,利用直观来推断出结论,渗透数形结合的思想。同时初步验证刚才结论的正确性。
本课作业
基础训练
板书设计