25.3 用频率估计概率 同步分层训练(知识梳理+基础训练+能力提升)(学生版+教师版)

文档属性

名称 25.3 用频率估计概率 同步分层训练(知识梳理+基础训练+能力提升)(学生版+教师版)
格式 zip
文件大小 682.4KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-04-12 18:40:46

文档简介

中小学教育资源及组卷应用平台
25.3 用频率估计概率
【知识梳理】
利用频率估计概率:实际上,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.用频率估计概率 ,虽然不像列举法能确切地计算出随机事件的概率,但由于不受“各种结果出现的可能性相等”的条件限制,使得可求概率的随机事件的范围扩大.
【基础训练】
1.下列说法正确的是(  )
A.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖
B.某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616
C.当试验次数很大时,概率稳定在频率附近
D.试验得到的频率与概率不可能相等
2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是(  )
A. B. C. D.
3.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.
身高
人数 60 260 550 130
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是( )
A.0.32 B.0.55 C.0.68 D.0.87
4.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是(  )
A.① B.② C.①② D.①③
5.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
A.20 B.30 C.40 D.50
6.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( )
A.两个转盘转出蓝色的概率一样大
B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了
C.游戏者配成紫色的概率为
D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同
7.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是(  )
A.红球比白球多 B.白球比红球多 C.红球,白球一样多 D.无法估计
8.某灯泡厂一次质量检查中,从300个灯泡中抽查了50个,其中有3个不合格,则出现不合格灯泡的频率是_______,在这300个灯泡中估计有_______个为不合格产品.
9.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.
10.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)
11.一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
摸球总次数
“和为”出现的频数
“和为”出现的频率
解答下列问题:
如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______;
如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.
12.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:样本容量为   ,a=   ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
13.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.
(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;
(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.
【能力提升】
1.在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是,则估计盒子中红球的个数大约是  
A.20个 B.16个 C.15个 D.12个
2.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )
A.16 B.20 C.24 D.28
3.某商场利用如图所示的转盘进行抽奖游戏,规定:顾客随机转转盘一次,当转盘停止后,指针指向阴影区域就能获奖(若指向分界线,则重转).通过大量游戏,发现中奖的频率稳定在0.2附近,那么可以推算出所有阴影部分的圆心角之和大约是(  )
A.90° B.72° C.60° D.45°
4.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:
移植总数(n) 200 500 800 2000 12000
成活数(m) 187 446 730 1790 10836
成活的频率 0.935 0.892 0.913 0.895 0.903
根据表中数据,估计这种幼树移植成活率的概率为___(精确到0.1).
5.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数
摸到白球的次数
摸到白球的频率
小杰根据表格中的数据提出了下列两个判断:①若摸次,则频率一定为;②可以估计摸一次得白球的概率约为.则这两个判断正确的是__________(若有正确的,则填编号;若没有正确的,则填“无”).
6.对一批衬衣进行抽检,统计合格衬衣的件数,获得如下频数表.
抽取件数(件) 100 150 200 500 800 1000
合格频数 88 141 176 445 720 900
合格频率 _______ 0.94 0.88 0.89 0.90 _______
(1)完成上表.
(2)估计任意抽一件衬衣是合格品的概率.
(3)估计出售1200件衬衣,其中次品大约有几件.
7.某批发商从某节能灯厂购进了50盒额定功率为的节能灯.由于包装工人的疏忽,在包装时混进了的节能灯.每盒中混入的节能灯数如表:
每盒中混入的节能灯数 0 1 2 3 4
盒数 14 25 9 1 1
(1)平均每盒混入几个的节能灯?
(2)从这50盒中任意抽取一盒,记事件为:该盒中没有混入的节能灯,求事件的概率.
8.国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间(单位:)进行了调查,将数据整理后得到下列不完整的统计图表:
组别 睡眠时间分组 频数 频率
4 0.08
8 0.16
10
21 0.42
0.14
请根据图表信息回答下列问题:(1)频数分布表中,________,________;
(2)扇形统计图中,组所在扇形的圆心角的度数是________;
(3)请估算该校600名八年级学生中睡眠不足7小时的人数;
(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
25.3 用频率估计概率
【知识梳理】
利用频率估计概率:实际上,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.用频率估计概率 ,虽然不像列举法能确切地计算出随机事件的概率,但由于不受“各种结果出现的可能性相等”的条件限制,使得可求概率的随机事件的范围扩大.
【基础训练】
1.下列说法正确的是(  )
A.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖
B.某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616
C.当试验次数很大时,概率稳定在频率附近
D.试验得到的频率与概率不可能相等
【答案】B
【详解】某彩票的中奖概率是5%,那么买100张彩票可能有5张中奖,A错;
某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是,B正确;当试验次数很大时,频率稳定在概率附近,C错;
试验得到的频率与概率有可能相等,D错.故选:B
2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是(  )
A. B. C. D.
【答案】D
【详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,
当小明到达该路口时,遇到绿灯的概率,
故选D.
3.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.
身高
人数 60 260 550 130
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是( )
A.0.32 B.0.55 C.0.68 D.0.87
【答案】C
【详解】解:样本中身高不低于170cm的频率,
所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.
故选:C.
4.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是(  )
A.① B.② C.①② D.①③
【答案】B
【详解】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.
故选:B.
5.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
A.20 B.30 C.40 D.50
【答案】A
【详解】根据题意得: ,
计算得出:n=20,
故选A.
6.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( )
A.两个转盘转出蓝色的概率一样大
B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了
C.游戏者配成紫色的概率为
D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同
【答案】C
【详解】解:A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;
B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;
C、画树状图如下:
由于共有6种等可能结果,而出现红色和蓝色的只有1种,
所以游戏者配成紫色的概率为,
D、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;
故选:C.
7.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是(  )
A.红球比白球多 B.白球比红球多 C.红球,白球一样多 D.无法估计
【答案】A
【详解】根据题意可得5位同学摸到红球的频率为,由此可得盒子里的红球比白球多.故选A.
8.某灯泡厂一次质量检查中,从300个灯泡中抽查了50个,其中有3个不合格,则出现不合格灯泡的频率是_______,在这300个灯泡中估计有_______个为不合格产品.
【答案】 18
【详解】解:50个灯泡中有3个不合格,
则出现不合格灯泡的频率为:,
这300个灯泡中,不合格产品数有0.06×300=18(个).
故答案为:0.06,18.
9.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.
【答案】7.
【详解】设袋中红球有x个,
根据题意,得:,
解得:x=7,
经检验:x=7是分式方程的解,
所以袋中红球有7个,
故答案为7.
10.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)
【答案】0.99
【详解】解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.
故答案为0.99.
11.一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
摸球总次数
“和为”出现的频数
“和为”出现的频率
解答下列问题:
如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______;
如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.
【答案】(1);(2)的值可以为其中一个.
【详解】(1)利用图表得出:
突验次数越大越接近实际概率,所以出现和为8的概率是0.33.
(2)当x=7时
则两个小球上数家之和为9的概率是
故x的值不可以取7.
∴出现和为9的概率是三分之一,即有3种可能,
∴3+x=9或4+x=9或5+x=9,
解得:x=6,x=5,x=4,故x的值可以为4,5,6其中一个.
12.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:样本容量为   ,a=   ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
【答案】(1)故答案为100,30;(2)见解析;(3)0.45.
【详解】解:(1),
所以样本容量为100;
B组的人数为,
所以,则;
故答案为,;
(2)补全频数分布直方图为:
(3)样本中身高低于的人数为,
样本中身高低于的频率为,
所以估计从该地随机抽取名学生,估计这名学生身高低于的概率为.
13.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.
(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;
(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.
【答案】(1);(2).
【详解】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率==;
(2)画树状图得:
∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,
∴两次摸出的球中一个是白球、一个是黄球的概率==.
【能力提升】
1.在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是,则估计盒子中红球的个数大约是  
A.20个 B.16个 C.15个 D.12个
【答案】D
【详解】设红球有x个,根据题意得,
3:(3+x)=1:5,
解得x=12,
经检验:x=12是原分式方程的解,
所以估计盒子中红球的个数大约有12个,
故选D.
2.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )
A.16 B.20 C.24 D.28
【答案】B
【详解】根据题意知=20%,
解得a=20,
经检验:a=20是原分式方程的解,
故选B.
3.某商场利用如图所示的转盘进行抽奖游戏,规定:顾客随机转转盘一次,当转盘停止后,指针指向阴影区域就能获奖(若指向分界线,则重转).通过大量游戏,发现中奖的频率稳定在0.2附近,那么可以推算出所有阴影部分的圆心角之和大约是(  )
A.90° B.72° C.60° D.45°
【答案】B
【详解】解:∵通过大量游戏,发现中奖的频率稳定在0.2,
∴可以推算出所有阴影部分的圆心角之和大约是360°×0.2=72°;
故选B.
4.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:
移植总数(n) 200 500 800 2000 12000
成活数(m) 187 446 730 1790 10836
成活的频率 0.935 0.892 0.913 0.895 0.903
根据表中数据,估计这种幼树移植成活率的概率为___(精确到0.1).
【答案】0.9
【详解】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,
∴这种幼树移植成活率的概率约为0.9.
故答案为:0.9.
5.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数
摸到白球的次数
摸到白球的频率
小杰根据表格中的数据提出了下列两个判断:①若摸次,则频率一定为;②可以估计摸一次得白球的概率约为.则这两个判断正确的是__________(若有正确的,则填编号;若没有正确的,则填“无”).
【答案】②
【详解】解:①若摸次,则频率在上下波动,故①错误;
②根据摸到白球的频率稳定在0.6左右,所以摸一次,摸到白球的概率为0.6,故②正确。故答案为:②
6.对一批衬衣进行抽检,统计合格衬衣的件数,获得如下频数表.
抽取件数(件) 100 150 200 500 800 1000
合格频数 88 141 176 445 720 900
合格频率 _______ 0.94 0.88 0.89 0.90 _______
(1)完成上表.
(2)估计任意抽一件衬衣是合格品的概率.
(3)估计出售1200件衬衣,其中次品大约有几件.
【答案】(1)见解析;(2)0.9;(3)120件
【详解】解:(1)88÷100=0.88,900÷1000=0.9,
填表如下:
抽取件数(件) 100 150 200 500 800 1000
合格频数 88 141 176 445 720 900
合格频率 0.88 0.94 0.88 0.89 0.90 0.9
(2)由(1)中所求即可得出:任取1件衬衣是合格品的概率为:0.9;
(3)1200×(1-0.9)=120件,
∴次品大约有120件.
7.某批发商从某节能灯厂购进了50盒额定功率为的节能灯.由于包装工人的疏忽,在包装时混进了的节能灯.每盒中混入的节能灯数如表:
每盒中混入的节能灯数 0 1 2 3 4
盒数 14 25 9 1 1
(1)平均每盒混入几个的节能灯?
(2)从这50盒中任意抽取一盒,记事件为:该盒中没有混入的节能灯,求事件的概率.
【答案】(1)1;(2)
【详解】解:(1),
答:平均每盒混入的节能灯的个数为1;
(2)已知没有混入的节能灯的盒数为14,
则,
答:事件的概率为.
8.国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间(单位:)进行了调查,将数据整理后得到下列不完整的统计图表:
组别 睡眠时间分组 频数 频率
4 0.08
8 0.16
10
21 0.42
0.14
请根据图表信息回答下列问题:(1)频数分布表中,________,________;
(2)扇形统计图中,组所在扇形的圆心角的度数是________;
(3)请估算该校600名八年级学生中睡眠不足7小时的人数;
(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.
【答案】(1)0.2,7;(2);(3)144人;(4)建议学校尽量让学生在学校完成作业,课后少布置作业.
【详解】(1)根据组别,本次调查的总体数量=,
∴组别的频率=,
∴组别的频数=频率×总体数量,∴,;
(2)∵(1)中求得的值为0.2,∴其在扇形中的度数;
(3)组别和的频率和为:,
∴八年级学生中睡眠不足7小时的人数(人);
(4)根据(3)中求得的该学校每天睡眠时长低于7小时的人数,建议学校尽量让学生在学校完成作业,课后少布置作业.
21世纪教育网(www.21cnjy.com)