24.2.2 直线与圆的位置关系 同步分层训练(知识梳理+基础训练+能力提升)(学生版+教师版)

文档属性

名称 24.2.2 直线与圆的位置关系 同步分层训练(知识梳理+基础训练+能力提升)(学生版+教师版)
格式 zip
文件大小 941.5KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-04-12 18:25:09

文档简介

中小学教育资源及组卷应用平台
24.2.2 直线与圆的位置关系
【知识梳理】
直线与圆的位置关系
设的半径为,圆心到直线的距离为,则直线和圆的位置关系如下表:
位置关系 图形 定义 性质及判定
相离 直线与圆没有公共点 直线与相离
相切 直线与圆有唯一公共点,直线叫做圆的切线,公共点叫做切点 直线与相切
相交 直线与圆有两个公共点,直线叫做圆的割线 直线与相交
切线的性质及判定
性质定理:圆的切线垂直于过切点的半径.
判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.
切线长定义:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
三角形内切圆概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
内心和外心的区别:
外接圆圆心:三角形三边垂直平分线的交点。
作法:做三角形三边垂直平分线,取交点即为外接圆圆心。
性质:外接圆圆心到三角形三个顶点距离相等。
内切圆圆心:三角形三个内角平分线的交点。
作法:做三角形三角的角平分线,取交点即为内接圆圆心。
性质:内接圆圆心到三角形三边距离相离。
直角三角形三边和内切圆半径之间的关系:
圆内接四边形概念:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形。这个圆叫做这个多边形的外接圆。
性质:圆内接四边形的对角互补,一个外角等于其内对角.
【基础训练】
1.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )
A.与x轴相交,与y轴相切 B.与x轴相离,与y轴相交
C.与x轴相切,与y轴相交 D.与x轴相切,与y轴相离
【答案】C
【解析】圆心到X轴的距离是4,到y轴的距离是3,4=4,3<4,∴圆与x轴相切,与y轴相交,故选C.
2.若直线l与半径为5的⊙O相交,则圆心O到直线l的距离d满足(  )
A.d<5 B.d>5 C.d=5 D.d≤5
【答案】A
【详解】解:∵直线l与⊙O的位置关系是相交,
∴d<r,
∵r=5,
∴d<5,
故选:A.
3.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于(  )
A.40° B.50° C.60° D.80°
【答案】D
【详解】∵BC是⊙O的切线,
∴∠ABC=90°,
∴∠A=90°-∠ACB=40°,
由圆周角定理得,∠BOD=2∠A=80°,
故选D.
4.如图,⊙O是△ABC的内切圆,则点O是△ABC的(  )
A.三条边的垂直平分线的交点 B.三条角平分线的交点
C.三条中线的交点 D.三条高的交点
【答案】B
【详解】解:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,
故选:B.
5.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于( )
A.55° B.70° C.110° D.125°
【答案】B
【详解】解:连接OA,OB,
∵PA,PB是⊙O的切线,
∴PA⊥OA,PB⊥OB,
∵∠ACB=55°,
∴∠AOB=110°,
∴∠APB=360° 90° 90° 110°=70°.
故选B.
6.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是(  )
A.23° B.44° C.46° D.57°
【答案】B
【详解】连接OC,如图,
∵CD为⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
∵∠COD=2∠A=46°,
∴∠D=90°﹣46°=44°,
故选B.
7.设的半径为,圆心到直线的距离,且使得关于的方程没有实数根,则直线与的位置关系为( )
A.相离 B.相切 C.相交 D.无法确定
【答案】A
【解析】∵关于x的方程6x2-4x+m-1=0没有实数根,∴△=b2-4ac<0,
即48-4×6×(m-1)<0,解这个不等式得m>3,
又因为⊙O的半径为3,所以直线与圆相离.
故选:A.
8.如图,AB、BC、CD、DA都是⊙O的切线.已知AD=3,BC=6,则AB+CD的值是( )
A.3 B.6 C.9 D.12
【答案】C
【解析】解:∵AB、BC、CD、DA都是的切线,∴可以假设切点分别为E、H、G、F,如图所示
∴AE=AF,BE=BH,DF=DG,CG=CH ∴AB+CD=AE+BE+DG+CG=AF+BH+DF+CH=AD+BC
∵AD=3,BC=6∴AB+CD=3+6=9 故本题最后答案选C.
9.如图,PA,PB分别切⊙O于A,B,并与⊙O的切线,分别相交于C,D,已知△PCD的周长等于10cm,则PA=__________ cm.
【答案】5
【详解】如图,设DC与⊙O的切点为E;
∵PA、PB分别是⊙O的切线,且切点为A、B;
∴PA=PB;
同理,可得:DE=DA,CE=CB;
则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);
∴PA=PB=5cm,
故答案为5.
10.如图,PA、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=________度.
【答案】60
【详解】解:连接OA,BO;
∵∠AOB=2∠E=120°,
∴∠OAP=∠OBP=90°,
∴∠P=180°-∠AOB=60°.
故答案为:60.
11.如图,⊙O的直径为AB,点C在圆周上(异于点A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的长;
(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.
【答案】(1) AC=4;(2)详见解析.
【详解】解:(1)∵AB是⊙O直径,C在⊙O上,
∴∠ACB=90°,
又∵BC=3,AB=5,
∴由勾股定理得AC=4;
(2)证明:连接OC
∵AC是∠DAB的角平分线,
∴∠DAC=∠BAC,
又∵AD⊥DC,
∴∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴∠DCA=∠CBA,
又∵OA=OC,
∴∠OAC=∠OCA,
∵∠OAC+∠OBC=90°,
∴∠OCA+∠ACD=∠OCD=90°,
∴DC是⊙O的切线.
【能力提升】
1.如图,在平面直角坐标系中,点在第一象限,⊙P与x轴、y轴都相切,且经过矩形的顶点C,与BC相交于点D,若⊙P的半径为5,点的坐标是,则点D的坐标是( )
A. B. C. D.
【答案】A
【详解】设切点分别为G,E,连接PG,PE,PC,PD,并延长EP交BC与F,则PG=PE=PC=5,四边形OBFE是矩形.
∵OA=8,
∴CF=8-5=3,
∴PF=4,
∴OB=EF=5+4=9.
∵PF过圆心,
∴DF=CF=3,
∴BD=8-3-3=2,
∴D(9,2).
故选A.
2.如图,AB是⊙O的直径,点C为⊙O外一点,CA、CD是⊙O的切线,A、D为切点,连接BD、AD.若∠ACD=48°,则∠DBA的大小是(  )
A.32° B.48° C.60° D.66°
【答案】D
【详解】解:∵CA、CD是⊙O的切线,
∴CA=CD,
∵∠ACD=48°,
∴∠CAD=∠CDA=66°,
∵CA⊥AB,AB是直径,
∴∠ADB=∠CAB=90°,
∴∠DBA+∠DAB=90°,∠CAD+∠DAB=90°,
∴∠DBA=∠CAD=66°,
故选D.
3.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4 B.6.25 C.7.5 D.9
【答案】A
【详解】∵AB=5,BC=13,CA=12,
∴AB2+AC2=BC2,
∴△ABC为直角三角形,且∠BAC=90°,
∵⊙O为△ABC内切圆,
∴∠AFO=∠AEO=90°,且AE=AF,
∴四边形AEOF为正方形,
设⊙O的半径为r,
∴OE=OF=r,
∴S四边形AEOF=r ,
连接AO,BO,CO,
∴S△ABC=S△AOB+S△AOC+S△BOC,
∴,
∴r=2,
∴S四边形AEOF=r =4,
故选A.
4.已知⊙O的半径为5,直线l与⊙O相交,点O到直线l的距离为3,则⊙O上到直线l的距离为2的点共有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【详解】
如图,
∵⊙O的半径为5,点O到直线l的距离为3,
∴CE=2,
在OE上取一点D,使DE=2,过点D作AB⊥OC,垂足为D,交⊙O于A、B两点,
∴⊙O上到直线l的距离为2的点为A、B、C,
故答案为3.
5.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是(  )
A.6 B.8 C.10 D.12
【答案】A
【解析】∵直线l:y=kx+4与x轴、y轴分别交于A、B,∴B(0,4),∴OB=4,
在RT△AOB中,∠OAB=30°,∴OA=OB=×4=12,
∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=PA,
设P(x,0),∴PA=12-x,∴⊙P的半径PM=PA=6-x,
∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,
∴使得⊙P成为整圆的点P个数是6.
故选A.
6.如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是(  )
A.3 B.4
C. D.
【答案】C
【详解】解:如图:延长FO交AB于点G,则点G是切点,OD交EF于点H,则点H是切点,
∵ABCD是正方形,点O在对角线BD上,
∴DF=DE,OF⊥DC,
∴GF⊥DC,
∴OG⊥AB,
∴OG=OH=HD=HE=AE,且都等于圆的半径.
在等腰直角三角形DEH中,DE=2,
∴EH=DH==AE.
∴AD=AE+DE=+2.
故选C.
7.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=15°,则∠P的度数为_____.
【答案】30°
【详解】∵PA为切线,
∴OA⊥PA,
∴∠CAP=90°,
∴∠PAB=90°-∠BAC=90°-15°=75°,
∵PA,PB是⊙O的切线,
∴PA=PB,
∴∠PBA=∠PAB=75°,
∴∠P=180°-75°-75°=30°.
故答案为30°.
8.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为 .
【答案】.
【解析】过点0作OE⊥AB于点E,OF⊥BC于点F.
∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;
在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;
又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB OE+BD OF=CD AC,即5×OE+2×0E=2×3,解得OE=,∴⊙O的半径是.故答案为.
9.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.
(1)求BF的长;
(2)求⊙O的半径r.
【答案】(1)BF=10;(2)r=2.
【详解】解:(1)在Rt△ABC中,∵∠C=90°,AB=13,BC=12,
∴AC===5,
∵⊙O为Rt△ABC的内切圆,切点分别为D,E,F,
∴BD=BF,AD=AE,CF=CE,
设BF=BD=x,则AD=AE=13﹣x,CFCE=12﹣x,
∵AE+EC=5,
∴13﹣x+12﹣x=5,
∴x=10,
∴BF=10.
(2)连接OE,OF,
∵OE⊥AC,OF⊥BC,
∴∠OEC=∠C=∠OFC=90°,
∴四边形OECF是矩形,
∴OE=CF=BC﹣BF=12﹣10=2.
即r=2.
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
24.2.2 直线与圆的位置关系
【知识梳理】
直线与圆的位置关系
设的半径为,圆心到直线的距离为,则直线和圆的位置关系如下表:
位置关系 图形 定义 性质及判定
相离 直线与圆没有公共点 直线与相离
相切 直线与圆有唯一公共点,直线叫做圆的切线,公共点叫做切点 直线与相切
相交 直线与圆有两个公共点,直线叫做圆的割线 直线与相交
切线的性质及判定
性质定理:圆的切线垂直于过切点的半径.
判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.
切线长定义:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
三角形内切圆概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
内心和外心的区别:
外接圆圆心:三角形三边垂直平分线的交点。
作法:做三角形三边垂直平分线,取交点即为外接圆圆心。
性质:外接圆圆心到三角形三个顶点距离相等。
内切圆圆心:三角形三个内角平分线的交点。
作法:做三角形三角的角平分线,取交点即为内接圆圆心。
性质:内接圆圆心到三角形三边距离相离。
直角三角形三边和内切圆半径之间的关系:
圆内接四边形概念:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形。这个圆叫做这个多边形的外接圆。
性质:圆内接四边形的对角互补,一个外角等于其内对角.
【基础训练】
1.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )
A.与x轴相交,与y轴相切 B.与x轴相离,与y轴相交
C.与x轴相切,与y轴相交 D.与x轴相切,与y轴相离
2.若直线l与半径为5的⊙O相交,则圆心O到直线l的距离d满足(  )
A.d<5 B.d>5 C.d=5 D.d≤5
3.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于(  )
A.40° B.50° C.60° D.80°
4.如图,⊙O是△ABC的内切圆,则点O是△ABC的(  )
A.三条边的垂直平分线的交点 B.三条角平分线的交点
C.三条中线的交点 D.三条高的交点
5.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于( )
A.55° B.70° C.110° D.125°
6.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是(  )
A.23° B.44° C.46° D.57°
7.设的半径为,圆心到直线的距离,且使得关于的方程没有实数根,则直线与的位置关系为( )
A.相离 B.相切 C.相交 D.无法确定
8.如图,AB、BC、CD、DA都是⊙O的切线.已知AD=3,BC=6,则AB+CD的值是( )
A.3 B.6 C.9 D.12
9.如图,PA,PB分别切⊙O于A,B,并与⊙O的切线,分别相交于C,D,已知△PCD的周长等于10cm,则PA=__________ cm.
10.如图,PA、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=________度.
11.如图,⊙O的直径为AB,点C在圆周上(异于点A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的长;
(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.
【能力提升】
1.如图,在平面直角坐标系中,点在第一象限,⊙P与x轴、y轴都相切,且经过矩形的顶点C,与BC相交于点D,若⊙P的半径为5,点的坐标是,则点D的坐标是( )
A. B. C. D.
2.如图,AB是⊙O的直径,点C为⊙O外一点,CA、CD是⊙O的切线,A、D为切点,连接BD、AD.若∠ACD=48°,则∠DBA的大小是(  )
A.32° B.48° C.60° D.66°
3.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4 B.6.25 C.7.5 D.9
4.已知⊙O的半径为5,直线l与⊙O相交,点O到直线l的距离为3,则⊙O上到直线l的距离为2的点共有( )
A.1个 B.2个 C.3个 D.4个
5.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是(  )
A.6 B.8 C.10 D.12
6.如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是(  )
A.3 B.4
C. D.
7.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=15°,则∠P的度数为_____.
8.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为 .
9.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.
(1)求BF的长;
(2)求⊙O的半径r.
21世纪教育网(www.21cnjy.com)