第二章 二次函数 单元复习题 2023--2024学年北师大版九年级数学下册 含解析

文档属性

名称 第二章 二次函数 单元复习题 2023--2024学年北师大版九年级数学下册 含解析
格式 docx
文件大小 405.6KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2024-04-15 19:07:49

图片预览

文档简介

北师大版九年级下册第二章二次函数单元复习题 
一.选择题(共12小题)
1.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:
x … ﹣3 ﹣2 ﹣1 0 1 …
y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …
则该函数图象的对称轴是(  )
A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=0
2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是(  )
A.a<0 B.b2﹣4ac<0 C.当﹣1<x<3时,y>0 D.﹣
3.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为(  )
A.或1 B.或1 C.或 D.或
4.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为(  )
A.﹣2 B.0 C.2 D.2.5
5.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是(  )
A.当a=1时,函数图象过点(﹣1,1)
B.当a=﹣2时,函数图象与x轴没有交点
C.若a>0,则当x≥1时,y随x的增大而减小
D.若a<0,则当x≤1时,y随x的增大而增大
6.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<xA<1).下列结论:①2a+b>0;②abc<0; ③若OC=2OA,则2b﹣ac=4; ④3a﹣c<0.其中正确的个数是(  )
A.1个 B.2个 C.3个 D.4个
7.抛物线y=,y=x2,y=﹣x2的共同性质是:
①都是开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴;④都关于x轴对称.
其中正确的个数有(  )
A.1个 B.2个 C.3个 D.4个
8.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x ﹣2 ﹣1 0 1 2
y 8 3 0 ﹣1 0
则抛物线的顶点坐标是(  )
A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有(  )
A.2个 B.3个 C.4个 D.5个
10.如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是(  )
A.4 B.3 C.2 D.1
11.如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是(  )
A.(4,3) B.(5,) C.(4,) D.(5,3)
12.已知Y1,Y2,Y3分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A(﹣1,﹣2)、B(2,1)和C(,3),规定M={Y1,Y2,Y3中最小的函数值},则下列结论:
①当x<﹣1时,M=Y1;②当﹣1<x<0时,Y2<Y3<Y1;
③当0≤x≤2时,M的最大值是1,无最小值;④当x≥2时,M最大值是1,无最小值.其中正确结论的个数为(  )
A.1个 B.2个 C.3个 D.4个
 
二.填空题(共8小题)
13.已知函数y=﹣x2﹣2x,当      时,函数值y随x的增大而增大.
14.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且tan∠ACO=,CO=BO,AB=3,则这条抛物线的函数解析式是  .
15.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为      .
16.如图,P是抛物线C:y=2x2﹣8x+8对称轴上的一个动点,直线x=k平行于y轴,分别与直线y=x、抛物线C交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,则满足条件的k为 _____________ .
17.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,
0)两点,则+的值为      .
18.已知点A(x1,y1)和B(x2,y2)是抛物线y=2(x﹣3)2+5上的两点,如果x1>x2>4,那么y1  y2.(填“>”、“=”或“<”)
19.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:
x … ﹣1 0 1 3 …
y … ﹣3 1 3 1 …
现给出下列说法:
①该函数开口向下.②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.③当x=2时,y=3.④方程ax2+bx+c=﹣2的正根在3与4之间.
其中正确的说法为      .(只需写出序号)
20.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为      . 
三.解答题(共8小题)
21.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(﹣1,8)并与x轴交于点A,B两点,且点B坐标为(3,0).
(1)求抛物线的解析式;
(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)
22.如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,).
(1)求抛物线的函数表达式;
(2)设抛物线的对称轴与x轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标;
(3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.
23.国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:
(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);
(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?
(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?
24.如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数 的图象.
(1)若点A的坐标为(1,0).
①求抛物线l的表达式,并直接写出当x为何值时,函数 的值y随x的增大而增大;
②如图2,若过A点的直线交函数 的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
25.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和对称轴.
(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.
26.如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).
(1)求抛物线的解析式;
(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.
(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.
27.如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3).
(1)求抛物线的函数表达式;
(2)判断△BCM是否为直角三角形,并说明理由.
(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.
28.如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);
(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).
参考答案
 
一.选择题(共12小题)
1.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:
x … ﹣3 ﹣2 ﹣1 0 1 …
y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …
则该函数图象的对称轴是(  )
A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=0
解:∵x=﹣3和﹣1时的函数值都是﹣3相等,
∴二次函数的对称轴为直线x=﹣2.
故选:B.
2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是(  )
A.a<0 B.b2﹣4ac<0
C.当﹣1<x<3时,y>0 D.﹣
解:A、∵抛物线的开口向上,∴a>0,故选项A错误;
B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选项B错误;
C、由函数图象可知,当﹣1<x<3时,y<0,故选项C错误;
D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故选项D正确.
故选D.
 
3.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为(  )
A.或1 B.或1 C.或 D.或
解:依题意知a>0,﹣>0,a+b﹣2=0,
故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,
于是0<a<2,
∴﹣2<2a﹣2<2,
又a﹣b为整数,
∴2a﹣2=﹣1,0,1,
故a=,1,,
b=,1,,
∴ab=或1,
故选A.
4.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为(  )
A.﹣2 B.0 C.2 D.2.5
解:∵m,n,k为非负实数,且m﹣k+1=2k+n=1,
∴m,n,k最小为0,当n=0时,k最大为:,
∴0≤k,
∵2k2﹣8k+6=2(k﹣2)2﹣2,
∴a=2>0,∴k≤2时,代数式2k2﹣8k+6的值随k的增大而减小,
∴k=时,代数式2k2﹣8k+6的最小值为:2×()2﹣8×+6=2.5.
故选:D.
 
5.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是(  )
A.当a=1时,函数图象过点(﹣1,1)
B.当a=﹣2时,函数图象与x轴没有交点
C.若a>0,则当x≥1时,y随x的增大而减小
D.若a<0,则当x≤1时,y随x的增大而增大
解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;
B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;
C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;
D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;
故选D.
6.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<xA<1).下列结论:①2a+b>0;②abc<0; ③若OC=2OA,则2b﹣ac=4; ④3a﹣c<0.其中正确的个数是(  )
A.1个 B.2个 C.3个 D.4个
解:①∵抛物线的开口向下,
∴a<0.
∵抛物线的对称轴﹣>1,
∴b>﹣2a,即2a+b>0,①成立;
②∵b>﹣2a,a<0,
∴b>0,
∵抛物线与y轴的交点在y轴的负半轴,
∴c<0,
∴abc>0,②错误;
③点A的横坐标为,点C的纵坐标为c,
∵OC=2OA,
∴﹣c=,整理得:2b﹣ac=4,③成立;
④∵抛物线的对称轴1<﹣<2,
∴﹣2a<b<﹣4a,
∵当x=1时,y=a+b+c>0,
∴a﹣4a+c>0,即3a﹣c<0,④正确.
综上可知正确的结论有3个.
故选C.
7.抛物线y=,y=x2,y=﹣x2的共同性质是:
①都是开口向上;
②都以点(0,0)为顶点;
③都以y轴为对称轴;
④都关于x轴对称.
其中正确的个数有(  )
A.1个 B.2个 C.3个 D.4个
解:抛物线y=,y=x2的开口向上,y=﹣x2的开口向下,①错误;
抛物线y=,y=x2,y=﹣x2的顶点为(0,0),对称轴为y轴,②③正确;④错误;
故选:B.
8.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x ﹣2 ﹣1 0 1 2
y 8 3 0 ﹣1 0
则抛物线的顶点坐标是(  )
A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
解:
∵当x=0或x=2时,y=0,当x=1时,y=﹣1,
∴,解得,
∴二次函数解析式为y=x2﹣2x=(x﹣1)2﹣1,
∴抛物线的顶点坐标为(1,﹣1),
故选C.
9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有(  )
A.2个 B.3个 C.4个 D.5个
解:(1)正确.∵﹣=2,
∴4a+b=0.故正确.
(2)错误.∵x=﹣3时,y<0,
∴9a﹣3b+c<0,
∴9a+c<3b,故(2)错误.
(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),
∴解得,
∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,
∵a<0,
∴8a+7b=2c>0,故(3)正确.
(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),
∵﹣2=,2﹣(﹣)=,
∴<
∴点C离对称轴的距离近,
∴y3>y2,
∵a<0,﹣3<﹣<2,
∴y1<y2
∴y1<y2<y3,故(4)错误.
(5)正确.∵a<0,
∴(x+1)(x﹣5)=﹣3/a>0,
即(x+1)(x﹣5)>0,
故x<﹣1或x>5,故(5)正确.
∴正确的有三个,
故选B.
10.如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是(  )
A.4 B.3 C.2 D.1
解:由抛物线的开口向下,且对称轴为x=1可知a<0,﹣=1,即b=﹣2a>0,
由抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上知c=1,
则abc<0,故①正确;
由①知y=ax2﹣2ax+1,
∵x=﹣1时,y=a+2a+1=3a+1<0,
∴a<﹣,故②正确;
∵抛物线y=ax2+bx+c(a≠0)的顶点在一次函数y=kx+1(k≠0)的图象上,
∴a+b+1=k+1,即a+b=k,
∵b=﹣2a,
∴﹣a=k,即a=﹣k,故③正确;
由函数图象知,当0<x<1时,二次函数图象在一次函数图象上方,
∴ax2+bx+1>kx+1,即ax2+bx>kx,
∵x>0,
∴ax+b>k,故④正确;
故选:A.
11.如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是(  )
A.(4,3) B.(5,) C.(4,) D.(5,3)
解:连接PC、PO、PA,设点P坐标(m,﹣)
令x=0,则y=,点C坐标(0,),
令y=0则﹣x2+x+=0,解得x=﹣2或10,
∴点A坐标(10,0),点B坐标(﹣2,0),
∴S△PAC=S△PCO+S△POA﹣S△AOC=××m+×10×(﹣)﹣××10=﹣(m﹣5)2+,
∴x=5时,△PAC面积最大值为,
此时点P坐标(5,).
故点P坐标为(5,).
12.已知Y1,Y2,Y3分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A(﹣1,﹣2)、B(2,1)和C(,3),规定M={Y1,Y2,Y3中最小的函数值},则下列结论:
①当x<﹣1时,M=Y1;
②当﹣1<x<0时,Y2<Y3<Y1;
③当0≤x≤2时,M的最大值是1,无最小值;
④当x≥2时,M最大值是1,无最小值.
其中正确结论的个数为(  )
A.1个 B.2个 C.3个 D.4个
解:一次函数Y3过点A(﹣1,﹣2)、B(2,1),则解析式为:Y3=x﹣1;
①当x<﹣1时,Y1,Y2,Y3中最小的函数值为Y1,所以M=Y1,故①正确;
②当﹣1<x<0时,Y2<Y3<Y1,故②正确;
③当0≤x≤2时,Y1,Y2,Y3中最小的函数值为Y3,M的最小值是﹣1,最大值是1;故③错误;
④当x≥2时,Y1,Y2,Y3中最小的函数值为Y1,则M最大值是1,无最小值,故④正确.
故选C.
二.填空题(共8小题)
13.已知函数y=﹣x2﹣2x,当 x≤﹣1 时,函数值y随x的增大而增大.
解:∵y=﹣x2﹣2x=﹣(x+1)2+1,
a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,
∴当x≤﹣1时,y随x的增大而增大,
故答案为:x≤﹣1.
14.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且tan∠ACO=,CO=BO,AB=3,则这条抛物线的函数解析式是 y=x2﹣x﹣2 .
解:∵tan∠ACO=,
∴=,
∴OC=2OA.
∵CO=BO,
∴BO=2AO.
∵AB=AO+BO=3,
∴AO=1,BO=2,CO=2,
∴A,B,C的坐标分别为(﹣1,0),(2,0),(0,﹣2).
把(﹣1,0),(0,﹣2)代入y=x2+bx+c得:
,解得,
∴抛物线的函数解析式是y=x2﹣x﹣2.
 
15.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为 (1+,3)或(2,﹣3) .
解:∵△ABC是等边三角形,且AB=2,
∴AB边上的高为3,
又∵点C在二次函数图象上,
∴C的纵坐标为±3,
令y=±3代入y=x2﹣2x﹣3,
∴x=1或0或2
∵使点C落在该函数y轴右侧的图象上,
∴x>0,
∴x=1+或x=2
∴C(1+,3)或(2,﹣3)
故答案为:(1+,3)或(2,﹣3)
16.如图,P是抛物线C:y=2x2﹣8x+8对称轴上的一个动点,直线x=k平行于y轴,分别与直线y=x、抛物线C交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,则满足条件的k为 或1或3 .
解:∵直线x=k分别与直线y=x、抛物线y=2x2﹣8x+8交于点A、B两点,
∴A(k,k),B(k,2k2﹣8k+8),AB=|k﹣(2k2﹣8k+8)|=|2k2﹣9k+8|,
①当△ABP是以点A为直角顶点的等腰直角三角形时,∠PAB=90°,此时PA=AB=|k﹣2|,
即|2k2﹣9k+8|=|k﹣2|,解得k=或1或3;
②当△ABP是以点B为直角顶点的等腰直角三角形时,则∠PBA=90°,此时PB=AB=|k﹣2|,结果同上.
故答案为:或1或3.
 
17.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为 ﹣4 .
解:设y=0,则2x2﹣4x﹣1=0,
∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,
∴x1+x2=﹣=2,x1, x2=﹣,
∴+==﹣4,
故答案为:﹣4.
18.已知点A(x1,y1)和B(x2,y2)是抛物线y=2(x﹣3)2+5上的两点,如果x1>x2>4,那么y1 > y2.(填“>”、“=”或“<”)
解:∵y=2(x﹣3)2+5,
∴a=2>0,有最小值为5,
∴抛物线开口向上,
∵抛物线y=2(x﹣3)2+5对称轴为直线x=3,
∵x1>x2>4,
∴y1>y2.
故答案为:>
 
19.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:
x … ﹣1 0 1 3 …
y … ﹣3 1 3 1 …
现给出下列说法:
①该函数开口向下.
②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.
③当x=2时,y=3.
④方程ax2+bx+c=﹣2的正根在3与4之间.
其中正确的说法为 ①③④ .(只需写出序号)
解:∵二次函数值先由小变大,再由大变小,
∴抛物线的开口向下,所以①正确;
∵抛物线过点(0,1)和(3,1),
∴抛物线的对称轴为直线x=,所以②错误;
点(1,3)和点(2,3)为对称点,所以③正确;
∵x=﹣1时,y=﹣3,
∴x=4时,y=﹣3,
∴二次函数y=ax2+bx+c的函数值为﹣2时,﹣1<x<0或3<x<4,
即方程ax2+bx+c=﹣2的负根在﹣1与0之间,正根在3与4之间,所以④正确.
故答案为①③④.
20.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为 15 .
解:∵D是抛物线y=﹣x2+6x上一点,
∴设D(x,﹣x2+6x),
∵顶点C的坐标为(4,3),
∴OC==5,
∵四边形OABC是菱形,
∴BC=OC=5,BC∥x轴,
∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,
∵﹣<0,
∴S△BCD有最大值,最大值为15,
故答案为15.
三.解答题(共8小题)
21.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(﹣1,8)并与x轴交于点A,B两点,且点B坐标为(3,0).
(1)求抛物线的解析式;
(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)
解:(1)∵抛物线y=x2+bx+c经过点(﹣1,8)与点B(3,0),

解得:
∴抛物线的解析式为:y=x2﹣4x+3
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴P(2,﹣1)
过点P作PH⊥Y轴于点H,过点B作BM∥y轴交直线PH于点M,过点C作CN⊥y轴叫直线BM于点N,如下图所示:
S△CPB=S矩形CHMN﹣S△CHP﹣S△PMB﹣S△CNB
=3×4﹣×2×4﹣﹣
=3
即:△CPB的面积为3
22.如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,).
(1)求抛物线的函数表达式;
(2)设抛物线的对称轴与x轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标;
(3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.
解:(1)∵抛物线的顶点为(1,)
∴设抛物线的函数关系式为y=a ( x﹣1)2+
∵抛物线与y轴交于点C (0,4),
∴a (0﹣1)2+=4
解得a=﹣
∴所求抛物线的函数关系式为y=﹣( x﹣1)2+
(2)P1 (1,),P2 (1,﹣),P3 (1,8),P4 (1,),
(3)存在.
令﹣( x﹣1)2+=0,解得x1=﹣2,x2=4
∴抛物线y=﹣( x﹣1)2+与x轴的交点为A (﹣2,0)B(4,0)
过点F作FM⊥OB于点M,
∵EF∥AC,
∴△BEF∽△BAC,
∴=
又∵OC=4,AB=6,
∴MF=×OC=EB
设E点坐标为 (x,0),则EB=4﹣x,MF= (4﹣x)
∴S=S△BCE﹣S△BEF= EB OC﹣ EB MF
= EB(OC﹣MF)= (4﹣x)[4﹣ (4﹣x)]
=﹣x2+x+=﹣( x﹣1)2+3
∵a=﹣<0,
∴S有最大值
当x=1时,S最大值=3
此时点E的坐标为 (1,0).
23.国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:
(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);
(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?
(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?
解:(1)设蝙蝠型风筝售价为x元时,销售量为y个,
根据题意可知:y=180﹣10(x﹣12)=﹣10x+300(12≤x≤30).
(2)设王大伯获得的利润为W,则W=(x﹣10)y=﹣10x2+400x﹣3000,
令W=840,则﹣10x2+400x﹣3000=840,
解得:x1=16,x2=24,
答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.
(3)∵W=﹣10x2+400x﹣3000=﹣10(x﹣20)2+1000,
∵a=﹣10<0,
∴当x=20时,W取最大值,最大值为1000.
答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.
24.如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数 的图象.
(1)若点A的坐标为(1,0).
①求抛物线l的表达式,并直接写出当x为何值时,函数 的值y随x的增大而增大;
②如图2,若过A点的直线交函数 的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
解:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:
(x﹣h)2﹣2=0,
解得:h=3或h=﹣1,
∵点A在点B的左侧,
∴h>0,
∴h=3,
∴抛物线l的表达式为:y=(x﹣3)2﹣2,
∴抛物线的对称轴是:直线x=3,
由对称性得:B(5,0),
由图象可知:当1<x<3或x>5时,函数 的值y随x的增大而增大;
②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,
由对称性得:DF=PD,
∵S△ABQ=2S△ABP,
∴AB QE=2×AB PD,
∴QE=2PD,
∵PD∥QE,
∴△PAD∽△QAE,
∴,
∴AE=2AD,
设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),
∵点F、Q在抛物线l上,
∴PD=DF=﹣[(1+a﹣3)2﹣2],
QE=(1+2a﹣3)2﹣2,
∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],
解得:a=或a=0(舍),
∴P(,);
(2)当y=0时,(x﹣h)2﹣2=0,
解得:x=h+2或h﹣2,
∵点A在点B的左侧,且h>0,
∴A(h﹣2,0),B(h+2,0),
如图3,作抛物线的对称轴交抛物线于点C,
分两种情况:
①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,
则,
∴3≤h≤4,
②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,
即:h+2≤2,
h≤0,
综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
25.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和对称轴.
(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.
解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),
∴,
解得,,
即此抛物线的解析式是y=x2﹣2x﹣3;
(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1;
(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,
设点P的坐标为(1,y),
当PA=PD时,
=,
解得,y=﹣,
即点P的坐标为(1,﹣);
当DA=DP时,
=,
解得,y=﹣4±,
即点P的坐标为(1,﹣4﹣2)或(1,﹣4+);
当AD=AP时,
=,
解得,y=±4,
即点P的坐标是(1,4)或(1,﹣4),
当点P为(1,﹣4)时与点D重合,故不符合题意,
由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣)或(1,﹣4﹣2)或(1,﹣4+)或(1,4).
26.如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).
(1)求抛物线的解析式;
(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.
(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.
解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,

∴抛物线的解析式为:y=x2﹣x﹣2;
(2)设P(m,m2﹣m﹣2),
∵PM∥x轴,PN∥y轴,M,N在直线AD上,
∴N(m,﹣m﹣),M(﹣m2+2m+2,m2﹣m﹣2),
∴PM+PN=﹣m2+2m+2﹣m﹣m﹣﹣m2+m+2=﹣m2+m+=﹣(m﹣)2+,
∴当m=时,PM+PN的最大值是;
(3)能,
理由:∵y=﹣x﹣交y轴于点E,
∴E(0,﹣),
∴CE=,
设P(m,m2﹣m﹣2),
若以E,C,P,F为顶点的四边形能构成平行四边形,
①以CE为边,∴CE∥PF,CE=PF,
∴F(m,﹣m﹣),
∴﹣m﹣﹣m2+m+2=,或m2﹣m﹣2+m+=,
∴m1=1,m2=0(舍去),m3=,m4=,
②以CE为对角线,连接PF交CE于G,
∴CG=GE,PG=FG,
∴G(0,﹣),
设P(m,m2﹣m﹣2),则F(﹣m,m﹣),
∴×(m2﹣m﹣2+m﹣)=﹣,
∴m=1,m=0(舍去),
综上所述,F(1,﹣),(,﹣),(,)(﹣1,0)以E,C,P,F为顶点的四边形能构成平行四边形.
27.如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3).
(1)求抛物线的函数表达式;
(2)判断△BCM是否为直角三角形,并说明理由.
(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.
解:(1)∵抛物线y=a(x+1)2﹣4与y轴相交于点C(0,﹣3).
∴﹣3=a﹣4,
∴a=1,
∴抛物线解析式为y=(x+1)2﹣4=x2+2x﹣3,
(2)△BCM是直角三角形
理由:由(1)有,抛物线解析式为y=(x+1)2﹣4,
∵顶点为M的抛物线y=a(x+1)2﹣4,
∴M(﹣1,﹣4),
由(1)抛物线解析式为y=x2+2x﹣3,
令y=0,
∴x2+2x﹣3=0,
∴x1=﹣3,x2=1,
∴A(1,0),B(﹣3,0),
∴BC2=9+9=18,CM2=1+1=2,BM2=4+14=20,
∴BC2+CM2=BM2,
∴△BCM是直角三角形,
(3)存在,N(﹣1+,)或N(﹣1﹣,),
∵以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等,且点M是抛物线的顶点,
∴①点N在x轴上方的抛物线上,
如图,
由(2)有△BCM是直角三角形,BC2=18,CM2=2,
∴BC=3,CM=,
∴S△BCM=BC×CM=×3×=3,
设N(m,n),
∵以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等,
∴S△ABN+S△ABC=S△BCM+S△ABC,
∴S△ABN=S△BCM=3,
∵A(1,0),B(﹣3,0),
∴AB=4,
∴S△ABN=×AB×n=×4×n=2n=3,
∴n=,
∵N在抛物线解析式为y=x2+2x﹣3的图象上,
∴m2+2m﹣3=,
∴m1=﹣1+,m2=﹣1﹣,
∴N(﹣1+,)或N(﹣1﹣,).
②如图2,
②点N在x轴下方的抛物线上,
∵点C在对称轴的右侧,
∴点N在对称轴右侧不存在,只有在对称轴的左侧,
过点M作MN∥BC,交抛物线于点N,
∵B(﹣3,0),C(0,﹣3),
∴直线BC解析式为y=﹣x﹣3,
设MN的解析式为y=﹣x+b
∵抛物线解析式为y=(x+1)2﹣4①,
∴M(﹣1,﹣4),
∴直线MN解析式为y=﹣x﹣5②,
联立①②得(舍),,
∴N(﹣2,﹣3),
即:N(﹣1+,)或N(﹣1﹣,)或N(﹣2,﹣3).
28.如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);
(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).
解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),
∴,
解得:,
∴y=x2﹣x﹣4;
(2)过点D作DM⊥y轴于点M,
∵y=x2﹣x﹣4=(x﹣1)2﹣,
∴点D(1,﹣)、点C(0,﹣4),
则S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC
=×(1+3)×﹣×(﹣4)×1﹣×3×4
=4;
(3)四边形APEQ为菱形,E点坐标为(﹣,﹣).理由如下
如图2,E点关于PQ与A点对称,过点Q作,QF⊥AP于F,
∵AP=AQ=t,AP=EP,AQ=EQ
∴AP=AQ=QE=EP,
∴四边形AQEP为菱形,
∵FQ∥OC,
∴==,
∴==
∴AF=t,FQ=t
∴Q(3﹣t,﹣t),
∵EQ=AP=t,
∴E(3﹣t﹣t,﹣t),
∵E在二次函数y=x2﹣x﹣4上,
∴﹣t=(3﹣t)2﹣(3﹣t)﹣4,
∴t=,或t=0(与A重合,舍去),
∴E(﹣,﹣).