第1章三角形的证明 解答题专题提升训练 2023—2024学年北师大版八年级数学下册 含答案

文档属性

名称 第1章三角形的证明 解答题专题提升训练 2023—2024学年北师大版八年级数学下册 含答案
格式 docx
文件大小 427.7KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2024-04-16 15:04:07

图片预览

文档简介

2023-2024学年北师大版八年级数学下册《第1章三角形的证明》
解答题专题提升训练(附答案)
1.如图,在△ABC中,AB=BC,AB的垂直平分线DE交AB、BC于点D、E.
(1)若∠C=72°,求∠B、∠1的度数;
(2)若BD=6,AC=7,求△AEC的周长.
2.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.
(1)试说明AD垂直平分EF;
(2)若AB=6,AC=4,S△ABC=15,求DE的长.
3.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.
(1)求证:CF=EB.
(2)若AB=12,AF=8,求CF的长.
4.在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F.
(1)若BE=CF,求证:AD是△ABC的角平分线.
(2)若AD是△ABC的角平分线,求证:BE=CF.
5.如图,在△ABC中,AB=AC,∠BAC=36°,BD平分∠ABC交AC于点D,过点A作AE∥BC,交BD的延长线于点E.
(1)求∠ADB的度数;
(2)求证:△ADE是等腰三角形.
6.已知:如图,点C为线段上一点,,都是等边三角形,连接交于点E,连接交于点F.
(1)求证:;
(2)判断形状,并说明理由.
7.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;
(2)如果AB=5,AC=3,求AE、BE的长.
8.如图,在△ABC中,∠ABC的平分线与△ABC的外角∠ACE的平分线交于点P,PD⊥AC于点D,PH⊥BA,交BA的延长线于点H.
(1)若点P到直线BA的距离为5cm,求点P到直线BC的距离;
(2)求证:点P在∠HAC的平分线上.
9.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.
10.如图,已知:AD是∠BAC的平分线,AB=BD,过点B作BE⊥AC,与AD交于点F.
(1)求证:AC∥BD;
(2)若AE=2,AB=3,BF=,求△ABF中AB边上的高.
11.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求证:CE=CF;
(2)若CD=2,求DF的长.
12.如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E、F.
(1)试说明△CEF是等腰三角形;
(2)若点E恰好在线段AB的垂直平分线上,猜想:线段AC与线段AB的数量关系,并说明理由;
(3)在(2)的条件下,若AC=2.5,求△ABE的面积.
13.如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:
(1)∠EAD=∠EDA;
(2)DF∥AC;
(3)∠EAC=∠B.
14.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.已知△ADE的周长为13cm.
(1)求线段BC;
(2)分别连接OA、OB、OC,若△OBC的周长为27cm,则OA的长为    cm.
15.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.
(1)若∠AFD=155°,求∠EDF的度数;
(2)若点F是AC的中点,求证:∠CFD=∠B.
16.如图,AD是△ABC的角平分线,EF是AD的垂直平分线.
求证:(1)∠EAD=∠EDA.
(2)DF∥AC.
(3)∠EAC=∠B.
17.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠BAD=   °;点D从B向C运动时,∠BDA逐渐变   (填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.
18.如图,为的角平分线.
(1)如图1,若于点F,交于点E,,,求;
(2)如图2,于点G,连接,若的面积是5,求的面积.
19.已知在中,,,分别过A、B向过点C的直线做垂线,垂足分别是D、E.
(1)如图1,若,直接写出、、之间的等量关系_______.
(2)如图2,若,的延长线交于点F,交于G,若F是中点,求证:
(3)在(2)的条件下,若,,求的面积.
20.如图,在平面直角坐标系中,直线交x轴于点B,交y轴于点A.
(1)线段 .
(2)点C为直线上一动点.
①若点C的坐标为,求直线的解析式.
②求线段的最短距离.
(3)N是y轴上的一点,当为等腰三角形时,请直接写出点N的坐标.
参考答案
1.解:∵AB的垂直平分线分别交AB,BC于点D,E,
∴BE=AE,∠ADE=∠BDE,
∵AB=BC,
∴∠C=∠BAC=∠3+∠4=72°,
∴∠B=180°﹣∠C﹣∠BAC=180°﹣72°﹣72°=36°,
∴∠3=∠B=36°,
∴∠1=90°﹣∠3=54°;
(2)∵BD=6,
∴AB=2BD=2×6=12,
∴BC=12,
∵AE=BE,
∴AE+CE+AC=BC+AC=12+7=19.
即△AEC的周长为19.
2.解:(1)∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△AED和Rt△AFD中,

∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
而DE=DF,
∴AD垂直平分EF;
(2)∵DE=DF,
∴S△ABC=S△ABD+S△ACD=AB ED+AC DF=DE(AB+AC)=15,
∵AB=6,AC=4,
∴×10×DE=15,
∴DE=3.
3.(1)证明:∵AD平分∠BAC,∠C=90°,DE⊥AB于E,
∴DE=DC.
在Rt△CDF与Rt△EDB中,

∴Rt△CDF≌Rt△EDB(HL),
∴CF=EB.
(2)解:设CF=x,则AE=12﹣x,
∵AD平分∠BAC,DE⊥AB,
∴CD=DE.
在Rt△ACD与Rt△AED中,

∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,即8+x=12﹣x,
解得x=2,即CF=2.
4.证明:(1)∵DE⊥AB,DF⊥AC,
∴△BDE△DCF是直角三角形.
在Rt△BDE与Rt△DCF中,

∴Rt△BDE≌Rt△DCF(HL),
∴DE=DF,
又∵DE⊥AB,DF⊥AC,
∴AD是△ABC的角平分线;
(2)∵AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F,
∴DE=DF,
∵AD是BC边的中线,
∴BD=CD,
在Rt△BDE和Rt△CDF中,

∴Rt△BDE≌Rt△CDF(HL),
∴BE=CF.
5.(1)解:∵AB=AC,∠BAC=36°,
∴∠ABC=∠C=(180°﹣∠BAC)=72°,
∵BD平分∠ABC,
∴∠DBC=∠ABC=36°,
∴∠ADB=∠C+∠DBC=72°+36°=108°;
(2)证明:∵AE∥BC,
∴∠EAC=∠C=72°,
∵∠C=72°,∠DBC=36°,
∴∠ADE=∠CDB=180°﹣72°﹣36°=72°,
∴∠EAD=∠ADE,
∴AE=DE,
∴△ADE是等腰三角形.
6.(1)证明:∵与都是等边三角形,
∴.
∴,
即:,
在和中

∴.
∴;
(2)是等边三角形,理由如下:
∵,
∴,
∴,
∵,
∴.
在和中

∴.
∴.
又∵,
∴是等边三角形.
7.(1)证明:连接BD,CD,
∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°,
∵DG⊥BC且平分BC,
∴BD=CD,
在Rt△BED与Rt△CFD中,

∴Rt△BED≌Rt△CFD(HL),
∴BE=CF;
(2)解:在△AED和△AFD中,

∴△AED≌△AFD(AAS),
∴AE=AF,
设BE=x,则CF=x,
∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,
∴5﹣x=3+x,
解得:x=1,
∴BE=1,AE=AB﹣BE=5﹣1=4.
8.(1)解:过点P作PF⊥BE于F,
∵点P在∠ABC的平分线,PH⊥BA,PF⊥BE,
∴PF=PH=5cm,即点P到直线BC的距离为5cm;
(2)证明:∵点P在∠ACE的平分线,PH⊥BA,PF⊥BE,
∴PF=PD,
∵PF=PH,
∴PD=PH,
∵PD⊥AC,PH⊥BA,
∴点P在∠HAC的平分线上.
9.证明:连接DF,
∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,
∴∠BCE=∠CAE.
∵AC⊥BC,BF∥AC.
∴BF⊥BC.
∴∠ACD=∠CBF=90°,
∵AC=CB,
∴△ACD≌△CBF.∴CD=BF.
∵CD=BD=BC,∴BF=BD.
∴△BFD为等腰直角三角形.
∵∠ACB=90°,CA=CB,
∴∠ABC=45°.
∵∠FBD=90°,
∴∠ABF=45°.
∴∠ABC=∠ABF,即BA是∠FBD的平分线.
∴BA是FD边上的高线,BA又是边FD的中线,
即AB垂直平分DF.
10.(1)证明:∵AD是∠BAC的平分线,
∴∠CAD=∠BAD,
∵AB=BD,
∴∠BDA=∠BAD,
∴∠CAD=∠BDA,
∴AC∥BD;
(2)解:作FG⊥AB于G,
在Rt△ABE中,AE=2,AB=3,
∴BE===,
∴FE=BE﹣BF=﹣=,
∵AD是∠BAC的平分线,BE⊥AC,作FG⊥AB,
∴FG=FE=,即△ABF中AB边上的高为.
11.证明:(1)∵△ABC是等边三角形,
∴∠A=∠B=∠ACB=60°.
∵DE∥AB,
∴∠B=EDC=60°,∠A=∠CED=60°,
∴∠EDC=∠ECD=∠DEC=60°,
∵EF⊥ED,
∴∠DEF=90°,
∴∠F=30°
∵∠F+∠FEC=∠ECD=60°,
∴∠F=∠FEC=30°,
∴CE=CF.
(2)由(1)可知∠EDC=∠ECD=∠DEC=60°,
∴CE=DC=2.
又∵CE=CF,
∴CF=2.
∴DF=DC+CF=2+2=4.
12.解:(1)∵CD⊥AB,
∴∠CDB=90°,
∴∠B+∠BCD=90°,
∵∠ACB=90°,
∴∠ACD+∠BCD=90°,
∴∠ACD=∠B,
∵AE平分∠BAC,
∴∠CAE=∠BAE,
∴∠ACD+∠CAE=∠B+∠BAE,
即∠CFE=∠CEF,
∴CF=CE,
即△CEF是等腰三角形;
(2)AB=2AC,
理由是:∵E在线段AB的垂直平分线上,
∴AE=BE,
∴∠B=∠BAE,
∵∠CAE=∠BAE,∠ACB=90°,
∴3∠B=90°,
∴∠B=30°,
∴AB=2AC;
(3)方法一、过E作EM⊥AB于M,
∵AC=2.5,∠ACB=90°,∠B=∠CAE=30°,
∴AE=2CE,
设CE=2,则AE=2x,
由勾股定理得:AC2+CE2=AE2,
即2.52+x2=(2x)2,
解得:x=,
即CE=,
∵AE平分∠CAB,∠ACB=90°,EM⊥AB,
∴EM=CE=,
∴△ABE的面积S==5×=;
方法二、由勾股定理得:BC=2.5,
∵CE=,
∴BE=BC﹣CE=,
∴△ABE的面积S==××2.5=.
13.证明:(1)∵EF是AD的垂直平分线,
∴AE=DE,
∴∠EAD=∠EDA;
(2)∵EF是AD的垂直平分线,
∴AF=DF,
∴∠FAD=∠FDA,
∵AD是∠BAC平分线,
∴∠FAD=∠CAD,
∴∠FDA=∠CAD,
∴DF∥AC;
(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD=∠CAD,∠EAD=∠EDA,
∴∠EAC=∠B.
14.解:(1)∵OM是线段AB的垂直平分线,
∴DA=DB,
同理,EA=EC,
∵△ADE的周长13,
∴AD+DE+EA=13,
∴BC=DB+DE+EC=AD+DE+EA=13(cm);
(2)连接OB,OC,
∵△OBC的周长为27,
∴OB+OC+BC=27,
∵BC=13,
∴OB+OC=14,
∵OM垂直平分AB,
∴OA=OB,
同理,OA=OC,
∴OA=OB=OC=7(cm),
故答案为:7.
15.解:(1)∵∠AFD=155°,
∴∠DFC=25°,
∵DF⊥BC,DE⊥AB,
∴∠FDC=∠AED=90°,
在Rt△FDC中,
∴∠C=90°﹣25°=65°,
∵AB=BC,
∴∠C=∠A=65°,
∴∠EDF=360°﹣65°﹣155°﹣90°=50°.
(2)连接BF
∵AB=BC,且点F是AC的中点,
∴BF⊥AC,∠ABF=∠CBF=∠ABC,
∴∠CFD+∠BFD=90°,
∠CBF+∠BFD=90°,
∴∠CFD=∠CBF,
∴∠CFD=∠ABC.
16.证明:(1)∵EF是AD的垂直平分线,
∴AE=DE,
∴∠EAD=∠EDA;
(2)∵EF是AD的垂直平分线,
∴AF=DF,
∴∠BAD=∠ADF,
∵AD是△ABC的角平分线,
∴∠BAD=∠CAD,
∴∠ADF=∠CAD,
∴DF∥AC;
(3)由(1)∠EAD=∠EDA,
即∠ADE=∠CAD+∠EAC,
∵∠ADE=∠BAD+∠B,
∠BAD=∠CAD,
∴∠EAC=∠B.
17.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;
从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;
故答案为:25°;小.
(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,
∴∠EDC=∠DAB.,
∵∠B=∠C,
∴当DC=AB=2时,△ABD≌△DCE,
(3)∵AB=AC,
∴∠B=∠C=40°,
①当AD=AE时,∠ADE=∠AED=40°,
∵∠AED>∠C,
∴此时不符合;
②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,
∵∠BAC=180°﹣40°﹣40°=100°,
∴∠BAD=100°﹣70°=30°;
∴∠BDA=180°﹣30°﹣40°=110°;
③当EA=ED时,∠ADE=∠DAE=40°,
∴∠BAD=100°﹣40°=60°,
∴∠BDA=180°﹣60°﹣40°=80°;
∴当∠ADB=110°或80°时,△ADE是等腰三角形.
18.(1)解:为的角平分线,,
,,



是等腰三角形,


则;
(2)解:如图延长,交于,
同理,可得是等腰三角形,,
设,
则,

则有,

19.(1)解:∵,
∴,
∵,
∴,
∴,
又∵,
∴,
∴,
∵,
∴,
故答案为:;
(2)证明:如图所示,过B作于B,延长交于H,
F为中点,



设,
在中,,

过A、B向过C的直线作垂线,
,,


在和中,


,,
在中,,,


在和中,



(3)解:由(2)得:,,,,
在和中,



延长至M,使,连接、,
、相交于F,

在和中,


,,

∵,
∴,

在和中,







20.(1)解:直线交x轴于点B,交y轴于点A,
令,则;令,则,解得:,
,,
,,
由勾股定理得:,
故答案为:5;
(2)解:①设直线的解析式为,
点C的坐标为,


即直线的解析式为;
②由垂线段最短可知,当时,线段的距离最短,
设,


解得:,
即线段的最短距离为;

(3)解:①当时,为等腰三角形时,



点N的坐标为;
②当时,为等腰三角形时,

设点N的坐标为,
,,
,,
解得:,
点N的坐标为;
③当时,为等腰三角形时,


当点在点下方时,,即点N的坐标为;
当点在点上方时,,即点N的坐标为;
综上可知,当为等腰三角形时,点N的坐标为或或或.