【高频考点】中考二轮复习学案:3.2概率问题(学生版+解析版)

文档属性

名称 【高频考点】中考二轮复习学案:3.2概率问题(学生版+解析版)
格式 zip
文件大小 1.7MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-04-16 11:06:00

文档简介

中小学教育资源及组卷应用平台
备考2024中考二轮数学《高频考点冲刺》(全国通用)
专题12 概率问题
考点扫描☆聚焦中考
概率问题,是每年中考的必考内容之一,题型以填空题、选择题及解答题的形式出现;主要考查必然事件、不可能事件及随机事件的区别,用列表、画树状图法求简单事件发生的概率以及用频率估计概率;考查的热点有:随机事件概率的计算;频率估算概率的计算及应用;统计与概率的以实际生活为背景的综合问题的应用解决。
考点剖析☆典型例题
例1(2023 营口)下列事件是必然事件的是(  )
A.四边形内角和是360° B.校园排球比赛,九年一班获得冠军
C.掷一枚硬币时,正面朝上 D.打开电视,正在播放神舟十六号载人飞船发射实况
【答案】A
【点拨】根据随机事件,必然事件,不可能事件的特点,逐一判断即可解答.
【解析】解:A、四边形内角和是360°,是必然事件,故A符合题意;
B、校园排球比赛,九年一班获得冠军,是随机事件,故B不符合题意;
C、掷一枚硬币时,正面朝上,是随机事件,故C不符合题意;
D、打开电视,正在播放神舟十六号载人飞船发射实况,是随机事件,故D不符合题意;
故选:A.
【点睛】本题考查了随机事件,熟练掌握随机事件,必然事件,不可能事件的特点是解题的关键.
例2(2023 广东)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为(  )
A. B. C. D.
【答案】C
【点拨】直接利用概率公式可得答案.
【解析】解:∵共有“种植”“烹饪”“陶艺”“木工”4门兴趣课程,
∴小明恰好选中“烹饪”的概率为.
故选:C.
【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
例3(2023 齐齐哈尔)某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是(  )
A. B. C. D.
【答案】A
【点拨】画树状图,共有12种等可能的结果,其中刚好抽中一名男同学和一名女同学的结果有6种,再由概率公式求解即可.
【解析】解:画树状图如下:
共有12种等可能的结果,其中刚好抽中一名男同学和一名女同学的结果有6种,
∴刚好抽中一名男同学和一名女同学的概率是=,
故选:A.
【点睛】本题考查了树状图法,树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
例4(2023 扬州)某种绿豆在相同条件下发芽试验的结果如下:
每批粒数n 2 5 10 50 100 500 1000 1500 2000 3000
发芽的频数m 2 4 9 44 92 463 928 1396 1866 2794
发芽的频率(精确到0.001) 1.000 0.800 0.900 0.880 0.920 0.926 0.928 0.931 0.933 0.931
这种绿豆发芽的概率的估计值为  0.93 (精确到0.01).
【答案】0.93
【点拨】当试验次数足够大时,发芽的频率逐渐稳定并趋于某一个值,这个值作为概率的估计值.
【解析】解:根据表中的发芽的频率,当实验次数的增多,发芽的频率越来越稳定在0.93左右,所以可估计这种绿豆发芽的机会大约是0.93.
故答案为:0.93.
【点睛】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率;用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.
例5(2023 济宁)某学校为扎实推进劳动教育,把学生参与劳动教育情况纳入积分考核.学校抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.
等级 劳动积分 人数
A x≥90 4
B 80≤x<90 m
C 70≤x<80 20
D 60≤x<70 8
E x<60 3
请根据图表信息,解答下列问题:
(1)统计表中m= 15 ,C等级对应扇形的圆心角的度数为  144° ;
(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;
(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.
【答案】(1)15,144°;
(2)估计该学校“劳动之星”大约有760人;
(3).
【点拨】(1)由D等级的人数除以所占百分比得出抽取的学生人数,即可解决问题;
(2)由该学校共有学生人数乘以该学校“劳动之星”所占的比例即可;
(3)画树状图,共有12种等可能的结果,其中恰好抽取一名男同学和一名女同学的结果有8种,再由概率公式求解即可.
【解析】解:(1)抽取的学生人数为:8÷16%=50(人),
∴m=50﹣4﹣20﹣8﹣3=15,
C等级对应扇形的圆心角的度数为:360°×=144°,
故答案为:15,144°;
(2)2000×=760(人),
答:估计该学校“劳动之星”大约有760人;
(3)画树状图如下:
共有12种等可能的结果,其中恰好抽取一名男同学和一名女同学的结果有8种,
∴恰好抽取一名男同学和一名女同学的概率为=.
【点睛】本题考查了树状图法以及频数分布表和扇形统计图等知识,树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
考点过关☆专项突破
类型一 事件的可能性
1.(2023 盘锦)下列事件中,是必然事件的是(  )
A.任意画一个三角形,其内角和是180° B.任意买一张电影票,座位号是单号
C.掷一次骰子,向上一面的点数是3 D.射击运动员射击一次,命中靶心
【答案】A
【点拨】根据随机事件,必然事件,不可能事件的特点,逐一判断即可解答.
【解析】解:A、任意画一个三角形,其内角和是180°,是必然事件,故A符合题意;
B、任意买一张电影票,座位号是单号,是随机事件,故B不符合题意;
C、掷一次骰子,向上一面的点数是3,是随机事件,故C不符合题意;
D、射击运动员射击一次,命中靶心,是随机事件,故D不符合题意;
故选:A.
【点睛】本题考查了随机事件,三角形的内角和定理,熟练掌握随机事件,必然事件,不可能事件的特点是解题的关键.
2.(2023 武汉)掷两枚质地均匀的骰子,下列事件是随机事件的是(  )
A.点数的和为1 B.点数的和为6 C.点数的和大于12 D.点数的和小于13
【答案】B
【点拨】根据事件发生的可能性大小判断即可.
【解析】解:A、两枚骰子的点数的和为1,是不可能事件,故不符合题意;
B、两枚骰子的点数之和为6,是随机事件,故符合题意;
C、点数的和大于12,是不可能事件,故不符合题意;
D、点数的和小于13,是必然事件,故不符合题意;
故选:B.
【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
3.(2022 扬州)下列成语所描述的事件属于不可能事件的是(  )
A.水落石出 B.水涨船高 C.水滴石穿 D.水中捞月
【答案】D
【点拨】根据事件发生的可能性大小判断.
【解析】解:A、水落石出,是必然事件,不符合题意;
B、水涨船高,是必然事件,不符合题意;
C、水滴石穿,是必然事件,不符合题意;
D、水中捞月,是不可能事件,符合题意;
故选:D.
【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4.(2023 西宁)下列说法正确的是(  )
A.检测“神舟十六号”载人飞船零件的质量,应采用抽样调查
B.任意画一个三角形,其外角和是180°是必然事件
C.数据4,9,5,7的中位数是6
D.甲、乙两组数据的方差分别是,,则乙组数据比甲组数据稳定
【答案】C
【点拨】直接利用中位数求法以及方差的意义、随机事件的定义分别判断得出答案.
【解析】解:A.检测“神舟十六号”载人飞船零件的质量,应采用全面调查,故此选项不合题意;
B.任意画一个三角形,其外角和是180°是不可能事件,故此选项不合题意;
C.数据4,9,5,7的中位数是:(5+7)÷2=6,故此选项符合题意;
D.甲、乙两组数据的方差分别是,,则甲组数据比乙组数据稳定,故此选项不合题意.
故选:C.
【点睛】此题主要考查了中位数以及方差、随机事件,正确掌握相关定义是解题关键.
5.(2020 贵阳)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是(  )
A. B. C. D.
【答案】D
【点拨】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.
【解析】解:在四个选项中,D选项袋子中红球的个数最多,
所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,
故选:D.
【点睛】本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.
类型二 概率的意义及计算公式
1.(2021 郴州)下列说法正确的是(  )
A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨
B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯
C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖
D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上
【答案】B
【点拨】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.
【解析】解:A.明天下雨的概率为80%,只是说明明天下雨的可能性大,与时间无关,故本选项不符合题意;
B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯,故本选项符合题意;
C.某彩票中奖概率是1%,买100张这种彩票中奖是随机事件,不一定会有1张中奖,故本选项不符合题意;
D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩不一定在90分以上,故本选项不符合题意.
故选:B.
【点睛】本题考查概率的意义,解题的关键是正确理解概率的意义,本题属于基础题型.
2.(2023 成都)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是(  )
A. B. C. D.
【答案】B
【点拨】根据概率公式直接计算即可.
【解析】解:∵卡片共6张,其中水果类卡片有2张,
∴恰好抽中水果类卡片的概率是.
故选:B.
【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
3.(2023 丹东)在一个不透明的袋子中,装有3个红球和若干个黑球,每个球除颜色外都相同,若从袋中任意摸出一个球是红球的概率为,则袋中黑球的个数为(  )
A.1 B.3 C.6 D.9
【答案】D
【点拨】根据题意和题目中的数据,可以列出算式3÷﹣3,然后计算即可.
【解析】解:由题意可得,
黑球的个数为:3÷﹣3
=3×4﹣3
=12﹣3
=9,
故选:D.
【点睛】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.
4.(2023 十堰)掷一枚质地均匀的正方体骰子,向上一面的点数为偶数的概率是(  )
A. B. C. D.
【答案】C
【点拨】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.
【解析】解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有3种为向上一面的点数偶数,
故其概率是=.
故选:C.
【点睛】本题考查的是概率的求法的运用.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=.
5.(2023 朝阳)五一期间,商场推出购物有奖活动:如图,一个可以自由转动的转盘被平均分成六份,其中红色1份,黄色2份,绿色3份,转动一次转盘,指针指向红色为一等奖,指向黄色为二等奖,指向绿色为三等奖(指针指向两个扇形的交线时无效,需重新转动转盘).转动转盘一次,获得一等奖的概率为(  )
A.1 B. C. D.
【答案】B
【点拨】根据概率公式计算获得一等奖的概率即可.
【解析】转盘共分成6等份,其中红色区域1份,即获得一等奖的区域是1份,
所以获得一等奖的概率是.
故选:B.
【点睛】本题考查了概率公式,解题的关键是熟练掌握概率公式,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=且0≤P(A)≤1.
6.(2023 深圳)小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为   .
【答案】.
【点拨】直接由概率公式求解即可.
【解析】解:小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,拿到《红星照耀中国》这本书的概率为,
故答案为:.
【点睛】本题考查了概率公式:概率=所求情况数与总情况数之比.熟记概率公式是解题的关键.
7.(2023 雅安)在一个不透明的口袋中,装有1个红球和若干个黄球,它们除颜色外都相同,从中随机摸出一个球是红球的概率为,则口袋中黄球有  3 个.
【答案】3.
【点拨】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【解析】解:设有黄球x个,
根据题意得:=,
解得:x=3,
经检验x=3是原方程的解.
故答案为:3.
【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=.
8.(2023 盐城)如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为   .
【答案】.
【点拨】根据几何概率的定义,求出阴影部分占整体的几分之几即可.
【解析】解:正方形被分成9个小正方形,并且飞镖落在每个小正方形的可能性是均等的,其中阴影部分是5个小正方形,
所以任意投掷飞镖1次,击中有颜色的小正方形(阴影部分)的概率是.
故答案为:.
【点睛】本题考查几何概率,理解概率的定义,掌握几何概率的计算方法是正确解答的关键.
类型三 用树状图法或列表法求概率
1.(2023 镇江)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是(  )
A.1 B. C. D.
【答案】B
【点拨】用列举法列举出所有等可能的结果,从中找出2张正面朝上的结果数,利用概率公式求出即可.
【解析】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上,
∴P=,
故选:B.
【点睛】本题考查列举法求等可能事件的概率,掌握等可能事件的概率公式是解题的关键.
2.(2023 安徽)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为(  )
A. B. C. D.
【答案】C
【点拨】先罗列出所有等可能结果,从中找到“平稳数”的结果,再根据概率公式求解即可.
【解析】解:用1,2,3这三个数字随机组成一个无重复数字的三位数出现的等可能结果有:
123、132、213、231、312、321,
其中恰好是“平稳数”的有123、321,
所以恰好是“平稳数”的概率为=,
故选:C.
【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
3.(2023 永州)今年2月,某班准备从《在希望的田野上》、《我和我的祖国》、《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是(  )
A. B. C. D.1
【答案】B
【点拨】列出表格,得出所有等可能的结果共有6种,其中恰好选中前面两首歌曲的结果有2种,再由概率公式求解即可.
【解析】解:设A《在希望的田野上》、B《我和我的祖国》、C《十送红军》.
列表如下:
歌曲 A B C
A (A,B) (A,C)
B (B,A) (B,C)
C (C,A) (C,B)
由上表可知,所有可能结果共有6种,且每种结果出现的可能性相等,其中恰好选中前面两首歌曲的结果有2种,
则恰好选中前面两首歌曲的概率为=.
故选:B.
【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
4.(2023 临沂)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是(  )
A. B. C. D.
【答案】D
【点拨】画树状图展示所有12种等可能的结果,再找出所选的学生恰好是一名男生和一名女生的结果数,然后根据概率公式计算.
【解析】解:画树状图为:
共有12种等可能的结果,其中一名男生和一名女生的结果数为8,
所以恰好抽到一名男生和一名女生的概率==.
故选:D.
【点睛】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.
5.(2023 山西)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是   .
【答案】.
【点拨】画树状图,共有12种等可能的情况,其中抽取的两本恰好是《论语》和《大学》的结果有2种,再由概率公式求解即可.
【解析】解:把《论语》《孟子》《大学》《中庸》分别记为A、B、C、D,
画树状图如下:
共有12种等可能的情况,其中抽取的两本恰好是《论语》和《大学》的结果有2种,即AC、CA,
∴抽取的两本恰好是《论语》和《大学》的概率是=,
故答案为:.
【点睛】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
6.(2022 宁夏)喜迎党的二十大召开,学校推荐了四部影片:《1921》、《香山叶正红》、《建党伟业》、《建军大业》.甲、乙同学用抽卡片的方式决定本班观看哪部,四张卡片正面分别是上述影片剧照,除此之外完全相同.将这四张卡片背面朝上,甲随机抽出一张并放回,洗匀后,乙再随机抽出一张,则两人恰好抽到同一部的概率是   .
【答案】.
【点拨】画树状图,共有16种等可能的结果,其中甲、乙两人恰好抽到同一部的结果有4种,再由概率公式求解即可.
【解析】解:把影片剧照《1921》、《香山叶正红》、《建党伟业》、《建军大业》的四张卡片分别记为A、B、C、D,
画树状图如下:
共有16种等可能的结果,其中甲、乙两人恰好抽到同一部的结果有4种,
∴甲、乙两人恰好抽到同一部的概率为=,
故答案为:.
【点睛】此题考查的是树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
7.(2022 聊城)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,﹣1;转盘B被四等分,分别标有数字3,2,﹣2,﹣3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是   .
【答案】
【点拨】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【解析】解:列表如下:
2 0 ﹣1
3 (2,3) (0,3) (﹣1,3)
2 (2,2) (0,2) (﹣1,2)
﹣2 (2,﹣2) (0,﹣2) (﹣1,﹣2)
﹣3 (2,﹣3) (0,﹣3) (﹣1,﹣3)
由表可知,共有12种等可能结果,其中点(x,y)落在直角坐标系第二象限的有2种,
所以点(x,y)落在直角坐标系第二象限的概率是=,
故答案为:.
【点睛】本题主要考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
8.(2023 苏州)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.
(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为   ;
(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)
【答案】见解析
【点拨】(1)直接利用概率公式求出即可;
(2)用列表法或树状图法列举出所有等可能的结果,从中找出第2次摸到的小球编号比第1次摸到的小球编号大1的结果,然后利用等可能事件的概率公式求出即可.
【解析】解:(1)∵一共有4个编号的小球,编号为2的有一个,
∴P(任意摸出1个球,这个球的编号是2)=;
(2)画树状图如下:
一共有16个等可能的结果,其中第2次摸到的小球编号比第1次摸到的小球编号大1出现了3次,
∴P(第2次摸到的小球编号比第1次摸到的小球编号大1)=.
【点睛】本题考查概率公式,列表法和树状图法求等可能事件的概率,掌握列表法和树状图法求等可能事件的概率的方法是解题的关键.
类型四 频率估计概率
1.(2023 恩施州)县林业部门考察银杏树苗在一定条件下移植的成活率,所统计的银杏树苗移植成活的相关数据如下表所示:
移植的棵数a 100 300 600 1000 7000 15000
成活的棵数b 84 279 505 847 6337 13581
成活的频率 0.84 0.93 0.842 0.847 0.905 0.905
根据表中的信息,估计银杏树苗在一定条件下移植成活的概率为(精确到0.1)(  )
A.0.905 B.0.90 C.0.9 D.0.8
【答案】C
【点拨】用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【解析】解:由表格数据可得,随着样本数量不断增加,这种树苗移植成活的频率稳定在0.9左右,
故估计银杏树苗在一定条件下移植成活的概率为0.9.
故选:C.
【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.
2.(2023 鞍山)在一个不透明的口袋中装有红球和白球共12个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出1个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸球200次,发现有50次摸到红球,则口袋中红球约有  3 个.
【答案】3
【点拨】利用频率估计随机摸出1个球是红球的概率为,根据概率公式即可求出答案.
【解析】解:由题意可得,
口袋中红球的个数约为:12×=3(个).
故答案为:3.
【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出相应的红球个数.
3.(2022 桂林)当重复试验次数足够多时,可用频率来估计概率.历史上数学家皮尔逊(Pearson)曾在实验中掷均匀的硬币24000次,正面朝上的次数是12012次,频率约为0.5,则掷一枚均匀的硬币,正面朝上的概率是  0.5 .
【答案】0.5
【点拨】根据大量重复试验中事件发生的频率可以表示概率解答即可.
【解析】解:当重复试验次数足够多时,频率逐渐稳定在0.5左右,
∴掷一枚均匀的硬币,正面朝上的概率是0.5.
故答案为:0.5.
【点睛】本题主要考查了用频率估计概率,熟练掌握大量重复试验中事件发生的频率可以表示概率是解答本题的关键.
4.(2022 益阳)近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有  800 只A种候鸟.
【答案】800
【点拨】在样本中“200只A种候鸟中有10只佩有识别卡”,即可求得有识别卡的所占比例,而这一比例也适用于整体,据此即可解答.
【解析】解:设该湿地约有x只A种候鸟,
则200:10=x:40,
解得x=800.
故答案为:800.
【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
5.(2021 甘肃)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复试验后,发现摸到红色小球的频率稳定于0.75左右.
(1)请你估计箱子里白色小球的个数;
(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).
【答案】(1)估计箱子里白色小球的个数为1;(2).
【点拨】(1)设白球有x个,根据多次摸球试验后发现,摸到红球的频率稳定在0.75左右可估计摸到红球的概率为0.75,据此利用概率公式列出关于x的方程,解之即可;
(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【解析】解:(1)∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右,
∴估计摸到红球的概率为0.75,
设白球有x个,
根据题意,得:=0.75,
解得x=1,
经检验x=1是分式方程的解,
∴估计箱子里白色小球的个数为1;
(2)画树状图为:
共有16种等可能的结果数,其中两次摸出的球恰好颜色不同的结果数为6,
∴两次摸出的小球颜色恰好不同的概率为=.
【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
类型五 统计与概率的综合应用
1.(2023 湖北)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).
根据图中信息,请回答下列问题;
(1)条形图中的m= 18 ,n= 6 ,文学类书籍对应扇形圆心角等于  72 度;
(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;
(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.
【答案】见解析
【点拨】(1)由喜欢E的人数除以所占百分比得出调查的学生人数,即可解决问题;
(2)由该校共有学生人数乘以最喜欢阅读政史类书籍的学生人数所占的比例即可;
(3)画树状图,共有9种等可能的结果,其中甲乙两位同学选择相同类别书籍的结果有2种,再由概率公式求解即可.
【解析】解:(1)调查的学生人数为:4÷8%=50(人),
∴m=50×36%=18,
∴n=50﹣18﹣10﹣12﹣4=6,
文学类书籍对应扇形圆心角=360°×=72°,
故答案为:18,6,72;
(2)2000×=480(人),
答:估计最喜欢阅读政史类书籍的学生人数约为480人;
(3)画树状图如下:
共有9种等可能的结果,其中甲乙两位同学选择相同类别书籍的结果有2种,即BB、CC,
∴甲乙两位同学选择相同类别书籍的概率为.
【点睛】此题考查的是用树状图法求概率以及条形统计图和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
2.(2023 张家界)2022年4月21日新版《义务教育课程方案和课程标准(2022年版)》正式颁布,优化了课程设置,其中将劳动教育从综合实践活动课程中独立出来.某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x分为如下四组(A:x<70;B:70≤x<80;C:80≤x<90;D:x≥90,单位:分钟)进行统计,绘制了如下不完整的统计图.
根据以上信息,解答下列问题:
(1)本次抽取的学生人数为  50 人,扇形统计图中m的值为  30 ;
(2)补全条形统计图;
(3)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?
(4)若D组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.
【答案】(1)50,30;
(2)图形见解析;
(3)估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生约有300人;
(4).
【点拨】(1)由D组的人数除以所占百分比得出本次抽取的学生人数,即可解决问题;
(2)求出C组的人数,补全条形统计图即可;
(3)由该校九年级学生人数乘以参加家务劳动的时间在80分钟(含80分钟)以上的学生所占的比例即可;
(4)画树状图,共有20种等可能的结果,其中抽取的两名同学中恰好是一名女生和一名男生的结果有12种,再由概率公式求解即可.
【解析】解:(1)本次抽取的学生人数为5÷10%=50(人),
∴m%=15÷50×100%=30%,
∴m=30,
故答案为:50,30;
(2)C组的人数为:50﹣10﹣15﹣5=20(人),
补全条形统计图如下:
(3)600×=300(人),
答:估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生约有300人;
(4)若D组中有3名女生,则有2名男生,
画树状图如下:
共有20种等可能的结果,其中抽取的两名同学中恰好是一名女生和一名男生的结果有12种,
∴抽取的两名同学中恰好是一名女生和一名男生的概率是=.
【点睛】此题考查的是用树状图法求概率以及条形统计图和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
3.(2023 雅安)某校为了调查本校学生对航空航天知识的知晓情况,开展了航空航天知识竞赛,从参赛学生中,随机抽取若干名学生的成绩进行统计,得到如下不完整的统计图表:
成绩/分 频数/人 频率
60≤x<70 10 0.1
70≤x<80 15 b
80≤x<90 a 0.35
90≤x≤100 40 c
请根据图表信息解答下列问题:
(1)求a,b,c的值;
(2)补全频数分布直方图;
(3)某班有2名男生和1名女生的成绩都为100分,若从这3名学生中随机抽取2名学生参加演讲,用列表或画树状图的方法,求抽取的2名学生恰好为1男1女的概率.
【答案】(1)a=35,b=0.15,c=0.4;
(2)详见解答;
(3).
【点拨】(1)成绩在60≤x<70的有10人,占调查人数的10%,由频率=可求出调查人数,进而求出a、b、c的值;
(2)根据频数分布表中的频数补全频数分布直方图;
(3)从2男1女三人中随机选取2人,用树状图法列举出所有等可能出现的结果,再根据概率的定义进行计算即可.
【解析】解:(1)调查人数为:10÷0.1=100(人),b=15÷100=0.15,a=0.35×100=35,c=40÷100=0.4,
答:a=35,b=0.15,c=0.4;
(2)由各组频数补全频数分布直方图如下:
(3)用树状图法表示所有等可能出现的结果如下:
共有6种等可能出现的结果,其中1男1女的有4种,
所以抽取的2名学生恰好为1男1女的概率是=.
【点睛】本题考查频数分布表、频数分布直方图以及列表法或树状图法,掌握频率=以及列举所有等可能出现的结果是正确解答的前提.
4.(2023 鄂州)2023年5月30日上午,神舟十六号载人飞船成功发射,举国振奋.为了使同学们进一步了解中国航天科技的快速发展,鄂州市某中学九(1)班团支部组织了一场手抄报比赛.要求该班每位同学从A:“北斗”,B:“5G时代”,C:“东风快递”,D:“智轨快运”四个主题中任选一个自己喜爱的主题.比赛结束后,该班团支部统计了同学们所选主题的频数,绘制成如图两种不完整的统计图,请根据统计图中的信息解答下列问题.
(1)九(1)班共有  50 名学生;并补全图1折线统计图;
(2)请阅读图2,求出D所对应的扇形圆心角的度数;
(3)若小林和小峰分别从A,B,C,D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
【答案】(1)50,折线图见解析;
(2)108°;
(3).
【点拨】(1)由B的人数除以所占百分比即可;求出D的人数,即可解决问题;
(2)由360°乘以D所占的比例即可;
(3)画树状图,共有16种等可能的结果,小林和小峰选择相同主题的结果有4种,再由概率公式求解即可.
【解析】解:(1)九(1)班共有学生人数为:20÷40%=50(名),
D的人数为:50﹣10﹣20﹣5=15(名),
补全折线统计图如下:
故答案为:50;
(2)D所对应扇形圆心角的大小为:360°×=108°,
∴D所对应的扇形圆心角的度数为:108°;
(3)画树状图如图:
共有16种等可能的结果,小林和小峰选择相同主题的结果有4种,
∴小林和小峰选择相同主题的概率为=.
【点睛】本题考查的是用列表法或画树状图法求概率以及折线统计图和扇形统计图.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.掌握概率公式:概率=所求情况数与总情况数之比是解题的关键.
5.(2023 丹东)为提高学生的安全意识,某学校组织学生参加了“安全知识答题”活动.该校随机抽取部分学生答题成绩进行统计,将成绩分为四个等级:A(优秀),B(良好),C(一般),D(不合格),并根据结果绘制成如图所示的两幅不完整的统计图.
根据图中所给信息解答下列问题:
(1)这次抽样调查共抽取   人,条形统计图中的m=  ;
(2)将条形统计图补充完整,在扇形统计图中,求C等所在扇形圆心角的度数;
(3)该校有1200名学生,估计该校学生答题成绩为A等和B等共有多少人;
(4)学校要从答题成绩为A等且表达能力较强的甲、乙、丙、丁四名学生中,随机抽出两名学生去做“安全知识宣传员”,请用列表或画树状图的方法,求抽出的两名学生恰好是甲和丁的概率.
【答案】(1)50,7;
(2)补充完整的条形统计图见解答C等所在扇形圆心角的度数为108°;
(3)估计该校学生答题成绩为A等和B等共有672人;
(4).
【点拨】(1)根据B等级的人数和所占的百分比,可以计算出本次抽取的人数,然后再计算m的值即可;
(2)根据(1)中的结果和A等级所占的百分比,可以计算出A等级的人数,然后即可将条形统计图补充完整,再计算出C等所在扇形圆心角的度数即可;
(3)根据扇形统计图中的数据,可以计算出该校学生答题成绩为A等和B等共有多少人;
(4)根据题意,可以画出相应的树状图,然后计算出抽出的两名学生恰好是甲和丁的概率即可.
【解析】解:(1)由统计图可得,
这次抽样调查共抽取:16÷32%=50(人),
m=50×14%=7,
故答案为:50,7;
(2)由(1)知,m=7,
等级为A的有:50﹣16﹣15﹣7=12(人),
补充完整的条形统计图如图所示,
C等所在扇形圆心角的度数为:360°×=108°;
(3)1200×(24%+32%)
=1200×56%
=672(人),
即估计该校学生答题成绩为A等和B等共有672人;
(4)树状图如下所示:
由上可得,一共存在12种等可能性,其中抽出的两名学生恰好是甲和丁的可能性有2种,
∴抽出的两名学生恰好是甲和丁的概率为=.
【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、列表法与树状图法,解答本题的关键是明确题意,利用数形结合的思想解答.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
备考2024中考二轮数学《高频考点冲刺》(全国通用)
专题12 概率问题
考点扫描☆聚焦中考
概率问题,是每年中考的必考内容之一,题型以填空题、选择题及解答题的形式出现;主要考查必然事件、不可能事件及随机事件的区别,用列表、画树状图法求简单事件发生的概率以及用频率估计概率;考查的热点有:随机事件概率的计算;频率估算概率的计算及应用;统计与概率的以实际生活为背景的综合问题的应用解决。
考点剖析☆典型例题
例1(2023 营口)下列事件是必然事件的是(  )
A.四边形内角和是360° B.校园排球比赛,九年一班获得冠军
C.掷一枚硬币时,正面朝上 D.打开电视,正在播放神舟十六号载人飞船发射实况
例2(2023 广东)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为(  )
A. B. C. D.
例3(2023 齐齐哈尔)某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是(  )
A. B. C. D.
例4(2023 扬州)某种绿豆在相同条件下发芽试验的结果如下:
每批粒数n 2 5 10 50 100 500 1000 1500 2000 3000
发芽的频数m 2 4 9 44 92 463 928 1396 1866 2794
发芽的频率(精确到0.001) 1.000 0.800 0.900 0.880 0.920 0.926 0.928 0.931 0.933 0.931
这种绿豆发芽的概率的估计值为   (精确到0.01).
例5(2023 济宁)某学校为扎实推进劳动教育,把学生参与劳动教育情况纳入积分考核.学校抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.
等级 劳动积分 人数
A x≥90 4
B 80≤x<90 m
C 70≤x<80 20
D 60≤x<70 8
E x<60 3
请根据图表信息,解答下列问题:
(1)统计表中m=  ,C等级对应扇形的圆心角的度数为   ;
(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;
(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.
考点过关☆专项突破
类型一 事件的可能性
1.(2023 盘锦)下列事件中,是必然事件的是(  )
A.任意画一个三角形,其内角和是180° B.任意买一张电影票,座位号是单号
C.掷一次骰子,向上一面的点数是3 D.射击运动员射击一次,命中靶心
2.(2023 武汉)掷两枚质地均匀的骰子,下列事件是随机事件的是(  )
A.点数的和为1 B.点数的和为6 C.点数的和大于12 D.点数的和小于13
3.(2022 扬州)下列成语所描述的事件属于不可能事件的是(  )
A.水落石出 B.水涨船高 C.水滴石穿 D.水中捞月
4.(2023 西宁)下列说法正确的是(  )
A.检测“神舟十六号”载人飞船零件的质量,应采用抽样调查
B.任意画一个三角形,其外角和是180°是必然事件
C.数据4,9,5,7的中位数是6
D.甲、乙两组数据的方差分别是,,则乙组数据比甲组数据稳定
5.(2020 贵阳)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是(  )
A. B. C. D.
类型二 概率的意义及计算公式
1.(2021 郴州)下列说法正确的是(  )
A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨
B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯
C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖
D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上
2.(2023 成都)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是(  )
A. B. C. D.
3.(2023 丹东)在一个不透明的袋子中,装有3个红球和若干个黑球,每个球除颜色外都相同,若从袋中任意摸出一个球是红球的概率为,则袋中黑球的个数为(  )
A.1 B.3 C.6 D.9
4.(2023 十堰)掷一枚质地均匀的正方体骰子,向上一面的点数为偶数的概率是(  )
A. B. C. D.
5.(2023 朝阳)五一期间,商场推出购物有奖活动:如图,一个可以自由转动的转盘被平均分成六份,其中红色1份,黄色2份,绿色3份,转动一次转盘,指针指向红色为一等奖,指向黄色为二等奖,指向绿色为三等奖(指针指向两个扇形的交线时无效,需重新转动转盘).转动转盘一次,获得一等奖的概率为(  )
A.1 B. C. D.
6.(2023 深圳)小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为   .
7.(2023 雅安)在一个不透明的口袋中,装有1个红球和若干个黄球,它们除颜色外都相同,从中随机摸出一个球是红球的概率为,则口袋中黄球有   个.
8.(2023 盐城)如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为   .
类型三 用树状图法或列表法求概率
1.(2023 镇江)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是(  )
A.1 B. C. D.
2.(2023 安徽)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为(  )
A. B. C. D.
3.(2023 永州)今年2月,某班准备从《在希望的田野上》、《我和我的祖国》、《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是(  )
A. B. C. D.1
4.(2023 临沂)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是(  )
A. B. C. D.
5.(2023 山西)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是   .
6.(2022 宁夏)喜迎党的二十大召开,学校推荐了四部影片:《1921》、《香山叶正红》、《建党伟业》、《建军大业》.甲、乙同学用抽卡片的方式决定本班观看哪部,四张卡片正面分别是上述影片剧照,除此之外完全相同.将这四张卡片背面朝上,甲随机抽出一张并放回,洗匀后,乙再随机抽出一张,则两人恰好抽到同一部的概率是   .
7.(2022 聊城)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,﹣1;转盘B被四等分,分别标有数字3,2,﹣2,﹣3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是   .
8.(2023 苏州)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.
(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为   ;
(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)
类型四 频率估计概率
1.(2023 恩施州)县林业部门考察银杏树苗在一定条件下移植的成活率,所统计的银杏树苗移植成活的相关数据如下表所示:
移植的棵数a 100 300 600 1000 7000 15000
成活的棵数b 84 279 505 847 6337 13581
成活的频率 0.84 0.93 0.842 0.847 0.905 0.905
根据表中的信息,估计银杏树苗在一定条件下移植成活的概率为(精确到0.1)(  )
A.0.905 B.0.90 C.0.9 D.0.8
2.(2023 鞍山)在一个不透明的口袋中装有红球和白球共12个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出1个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸球200次,发现有50次摸到红球,则口袋中红球约有   个.
3.(2022 桂林)当重复试验次数足够多时,可用频率来估计概率.历史上数学家皮尔逊(Pearson)曾在实验中掷均匀的硬币24000次,正面朝上的次数是12012次,频率约为0.5,则掷一枚均匀的硬币,正面朝上的概率是   .
4.(2022 益阳)近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有   只A种候鸟.
5.(2021 甘肃)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复试验后,发现摸到红色小球的频率稳定于0.75左右.
(1)请你估计箱子里白色小球的个数;
(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).
类型五 统计与概率的综合应用
1.(2023 湖北)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).
根据图中信息,请回答下列问题;
(1)条形图中的m=  ,n=  ,文学类书籍对应扇形圆心角等于   度;
(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;
(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.
2.(2023 张家界)2022年4月21日新版《义务教育课程方案和课程标准(2022年版)》正式颁布,优化了课程设置,其中将劳动教育从综合实践活动课程中独立出来.某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x分为如下四组(A:x<70;B:70≤x<80;C:80≤x<90;D:x≥90,单位:分钟)进行统计,绘制了如下不完整的统计图.
根据以上信息,解答下列问题:
(1)本次抽取的学生人数为    人,扇形统计图中m的值为    ;
(2)补全条形统计图;
(3)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?
(4)若D组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.
3.(2023 雅安)某校为了调查本校学生对航空航天知识的知晓情况,开展了航空航天知识竞赛,从参赛学生中,随机抽取若干名学生的成绩进行统计,得到如下不完整的统计图表:
成绩/分 频数/人 频率
60≤x<70 10 0.1
70≤x<80 15 b
80≤x<90 a 0.35
90≤x≤100 40 c
请根据图表信息解答下列问题:
(1)求a,b,c的值;
(2)补全频数分布直方图;
(3)某班有2名男生和1名女生的成绩都为100分,若从这3名学生中随机抽取2名学生参加演讲,用列表或画树状图的方法,求抽取的2名学生恰好为1男1女的概率.
4.(2023 鄂州)2023年5月30日上午,神舟十六号载人飞船成功发射,举国振奋.为了使同学们进一步了解中国航天科技的快速发展,鄂州市某中学九(1)班团支部组织了一场手抄报比赛.要求该班每位同学从A:“北斗”,B:“5G时代”,C:“东风快递”,D:“智轨快运”四个主题中任选一个自己喜爱的主题.比赛结束后,该班团支部统计了同学们所选主题的频数,绘制成如图两种不完整的统计图,请根据统计图中的信息解答下列问题.
(1)九(1)班共有    名学生;并补全图1折线统计图;
(2)请阅读图2,求出D所对应的扇形圆心角的度数;
(3)若小林和小峰分别从A,B,C,D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
5.(2023 丹东)为提高学生的安全意识,某学校组织学生参加了“安全知识答题”活动.该校随机抽取部分学生答题成绩进行统计,将成绩分为四个等级:A(优秀),B(良好),C(一般),D(不合格),并根据结果绘制成如图所示的两幅不完整的统计图.
根据图中所给信息解答下列问题:
(1)这次抽样调查共抽取   人,条形统计图中的m=  ;
(2)将条形统计图补充完整,在扇形统计图中,求C等所在扇形圆心角的度数;
(3)该校有1200名学生,估计该校学生答题成绩为A等和B等共有多少人;
(4)学校要从答题成绩为A等且表达能力较强的甲、乙、丙、丁四名学生中,随机抽出两名学生去做“安全知识宣传员”,请用列表或画树状图的方法,求抽出的两名学生恰好是甲和丁的概率.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录