中小学教育资源及组卷应用平台
备考2024中考二轮数学《高频考点冲刺》(全国通用)
专题10 二次函数问题
考点扫描☆聚焦中考
二次函数问题是中考的重点内容,近几年各地中考题目主要以选择题与解答题的形式考查,也可能在填空题中出现,题目难度中高档;考查内容主要有:二次函数的性质与图象;用待定系数法确定函数解析式;二次函数的最值与平移问题;与方程、不等式、几何知识结合的综合题等;考查热点主要有:二次函数的性质与图象;通过具体问题情境学会用三种方式表示二次函数关系;通过在实际问题中应用二次函数的性质,发展应用二次函数解决实际问题的能力。
考点剖析☆典型例题
例1 (2022 株洲)已知二次函数y=ax2+bx﹣c(a≠0),其中b>0、c>0,则该函数的图象可能为( )
A.B. C.D.
例2(2023 兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是( )
A.对称轴为直线x=﹣2 B.顶点坐标为(2,3)
C.函数的最大值是﹣3 D.函数的最小值是﹣3
例3(2023 达州)如图,抛物线y=ax2+bx+c(a,b,c为常数)关于直线x=1对称.下列五个结论:
①abc>0;②2a+b=0;③4a+2b+c>0;④am2+bm>a+b;⑤3a+c>0.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
例4(2023 西藏)将抛物线y=(x﹣1)2+5平移后,得到抛物线的解析式为y=x2+2x+3,则平移的方向和距离是( )
A.向右平移2个单位长度,再向上平移3个单位长度
B.向右平移2个单位长度,再向下平移3个单位长度
C.向左平移2个单位长度,再向上平移3个单位长度
D.向左平移2个单位长度,再向下平移3个单位长度
例5(2023 无锡)二次函数y=x2+(2m﹣1)x+2m(m≠),有下列结论:
①该函数图象过定点(﹣1,2);
②当m=1时,函数图象与x轴无交点;
③函数图象的对称轴不可能在y轴的右侧;
④当1<m<时,点P(x1,y1),Q(x2,y2)是曲线上两点,若﹣3<x1<﹣2,﹣<x2<0,则y1>y2.
其中,正确结论的序号为 .
例6(2023 丽水)已知点(﹣m,0)和(3m,0)在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图象上.
(1)当m=﹣1时,求a和b的值;
(2)若二次函数的图象经过点A(n,3)且点A不在坐标轴上,当﹣2<m<﹣1时,求n的取值范围;
(3)求证:b2+4a=0.
例7(2023 辽宁)商店出售某品牌护眼灯,每台进价为40元,在销售过程中发现,月销量y(台)与销售单价x(元)之间满足一次函数关系,规定销售单价不低于进价,且不高于进价的2倍,其部分对应数据如下表所示:
销售单价x(元) … 50 60 70 …
月销量y(台) … 90 80 70 …
(1)求y与x之间的函数关系式;
(2)当护眼灯销售单价定为多少元时,商店每月出售这种护眼灯所获的利润最大?最大月利润为多少元?
例8(2023 山西)综合与探究
如图,二次函数y=﹣x2+4x的图象与x轴的正半轴交于点A,经过点A的直线与该函数图象交于点B(1,3),与y轴交于点C.
(1)求直线AB的函数表达式及点C的坐标;
(2)点P是第一象限内二次函数图象上的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,设点P的横坐标为m.
①当时,求m的值;
②当点P在直线AB上方时,连接OP,过点B作BQ⊥x轴于点Q,BQ与OP交于点F,连接DF.设四边形FQED的面积为S,求S关于m的函数表达式,并求出S的最大值.
考点过关☆专项突破
类型一 二次函数的图象与性质
1.(2023 沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.(2021 江西)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )
A.B. C. D.
3.(2023 陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有( )
A.最大值5 B.最大值 C.最小值5 D.最小值
4.(2023 衢州)已知二次函数y=ax2﹣4ax(a是常数,a<0)的图象上有A(m,y1)和B(2m,y2)两点.若点A,B都在直线y=﹣3a的上方,且y1>y2,则m的取值范围是( )
A. B. C. D.m>2
5.(2023 大连)已知二次函数y=x2﹣2x﹣1,当0≤x≤3时,函数的最大值为( )
A.﹣2 B.﹣1 C.0 D.2
6.(2023 扬州)已知二次函数y=ax2﹣2x+(a为常数,且a>0),下列结论:①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x<0时,y随x的增大而减小;④当x>0时,y随x的增大而增大.其中所有正确结论的序号是( )
A.①② B.②③ C.② D.③④
7.(2021 福建)二次函数y=ax2﹣2ax+c(a>0)的图象过A(﹣3,y1),B(﹣1,y2),C(2,y3),D(4,y4)四个点,下列说法一定正确的是( )
A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
8.(2022 长春)已知二次函数y=﹣x2﹣2x+3,当a≤x≤时,函数值y的最小值为1,则a的值为 .
9.(2023 福建)已知抛物线y=ax2﹣2ax+b(a>0)经过A(2n+3,y1),B(n﹣1,y2)两点,若A,B分别位于抛物线对称轴的两侧,且y1<y2,则n的取值范围是 .
10.(2023 北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c(a>0)上任意两点,设抛物线的对称轴为x=t.
(1)若对于x1=1,x2=2,有y1=y2,求t的值;
(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.
类型二 二次函数的图象与系数的关系
1.(2023 阜新)如图,二次函数y=ax2+bx+c的图象与x轴的一个交点为(3,0),对称轴是直线x=1,下列结论正确的是( )
A.abc<0 B.2a+b=0 C.4ac>b2 D.点(﹣2,0)在函数图象上
2.(2023 雅安)如图,二次函数y=ax2+bx+c的图象与x轴交于A(﹣2,0),B两点,对称轴是直线x=2,下列结论中,所有正确结论的序号为( )
①a>0; ②点B的坐标为(6,0); ③c=3b; ④对于任意实数m,都有4a+2b≥am2+bm.
A.①② B.②③ C.②③④ D.③④
3.(2023 黄石)已知二次函数y=ax2+bx+c(a≠0)的图象经过三点A(x1,y1),B(x2,y2),C(﹣3,0),且对称轴为直线x=﹣1.有以下结论:①a+b+c=0;②2c+3b=0;③当﹣2<x1<﹣1,0<x2<1时,有y1<y2;④对于任何实数k>0,关于x的方程ax2+bx+c=k(x+1)必有两个不相等的实数根.其中结论正确的有( )
A.1个 B.2个 C.3个 D.4个
4.(2023 遂宁)抛物线y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣2.下列说法:①abc<0;②c﹣3a>0;③4a2﹣2ab≥at(at+b)(t为全体实数);④若图象上存在点A(x1,y1)和点B(x2,y2),当m<x1<x2<m+3时,满足y1=y2,则m的取值范围为﹣5<m<﹣2,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
5.(2023 湖北)抛物线y=ax2+bx+c(a<0)与x轴相交于点A(﹣3,0),B(1,0).下列结论:①abc<0;②b2﹣4ac>0;③3b+2c=0;④若点P(m﹣2,y1),Q(m,y2)在抛物线上,且y1<y2,则m≤﹣1.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
6.(2023 南京)已知二次函数y=ax2﹣2ax+3(a为常数,a≠0).
(1)若a<0,求证:该函数的图象与x轴有两个公共点.
(2)若a=﹣1,求证:当﹣1<x<0时,y>0.
(3)若该函数的图象与x轴有两个公共点(x1,0),(x2,0),且﹣1<x1<x2<4,则a的取值范围是 a>3或a<﹣1 .
类型三 二次函数的图象变换
1.(2022 泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是( )
A.y=﹣x2+x B.y=﹣x2﹣4 C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+1
2.(2023 徐州)在平面直角坐标系中,将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为( )
A.y=(x+3)2+2 B.y=(x﹣1)2+2 C.y=(x﹣1)2+4 D.y=(x+3)2+4
3.(2020 衢州)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )
A.向左平移2个单位,向下平移2个单位 B.向左平移1个单位,向上平移2个单位
C.向右平移1个单位,向下平移1个单位 D.向右平移2个单位,向上平移1个单位
4.(2020 陕西)在同一平面直角坐标系中,若抛物线y=mx2+2x﹣n与y=﹣6x2﹣2x+m﹣n关于x轴对称,则m,n的值为( )
A.m=﹣6,n=﹣3 B.m=﹣6,n=3 C.m=6,n=﹣3 D.m=6,n=3
5.(2022 黔东南州)在平面直角坐标系中,将抛物线y=x2+2x﹣1先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是 .
6.(2023 益阳)我们在学习一次函数、二次函数图象的平移时知道:将一次函数y=2x的图象向上平移1个单位得到y=2x+1的图象;将二次函数y=x2+1的图象向左平移2个单位得到y=(x+2)2+1的图象,若将反比例函数y=的图象向下平移3个单位,如图所示,则得到的图象对应的函数表达式是 .
7.(2022 河北)如图,点P(a,3)在抛物线C:y=4﹣(6﹣x)2上,且在C的对称轴右侧.
(1)写出C的对称轴和y的最大值,并求a的值;
(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=﹣x2+6x﹣9.求点P′移动的最短路程.
类型四 二次函数的图象与x轴的交点
1.(2023 郴州)已知抛物线y=x2﹣6x+m与x轴有且只有一个交点,则m= .
2.(2023 甘孜州)下列关于二次函数y=(x﹣2)2﹣3的说法正确的是( )
A.图象是一条开口向下的抛物线 B.图象与x轴没有交点
C.当x<2时,y随x增大而增大 D.图象的顶点坐标是(2,﹣3)
3.(2023 陕西)如表中列出的是一个二次函数的自变量x与函数y的几组对应值:
x … ﹣3 0 3 5 …
y … 16 ﹣5 ﹣8 0 …
则下列关于这个二次函数的结论中,正确的是( )
A.图象的顶点在第一象限 B.有最小值﹣8
C.图象与x轴的一个交点是(﹣1,0) D.图象开口向下
4.(2023 衡阳)已知m>n>0,若关于x的方程x2+2x﹣3﹣m=0的解为x1,x2(x1<x2),关于x的方程x2+2x﹣3﹣n=0的解为x3,x4(x3<x4).则下列结论正确的是( )
A.x3<x1<x2<x4 B.x1<x3<x4<x2
C.x1<x2<x3<x4 D.x3<x4<x1<x2
5.(2023 巴中)规定:如果两个函数的图象关于y轴对称,那么称这两个函数互为“Y函数”.例如:函数y=x+3与y=﹣x+3互为“Y函数”.若函数y=x2+(k﹣1)x+k﹣3的图象与x轴只有一个交点,则它的“Y函数”图象与x轴的交点坐标为 .
6.(2023 云南)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.
同学们,请你结合所学的数学解决下列问题.
在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象为图象T.
(1)求证:无论a取什么实数,图象T与x轴总有公共点;
(2)是否存在整数a,使图象T与x轴的公共点中有整点?若存在,求所有整数a的值;若不存在,请说明理由.
类型五 二次函数的实际应用
1.(2023 宜昌)如图,一名学生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣(x﹣10)(x+4),则铅球推出的距离OA= m.
2.(2023 滨州)某广场要建一个圆形喷水池,计划在池中心位置竖直安装一根顶部带有喷水头的水管,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心的水平距离也为3m,那么水管的设计高度应为 .
3.(2023 天津)如图,要围一个矩形菜园ABCD,其中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m,有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD面积为192m2;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
4.(2023 德州)某商场购进了A,B两种商品,若销售10件A商品和20件B商品,则可获利280元;若销售20件A商品和30件B商品,则可获利480元.
(1)求A,B两种商品每件的利润;
(2)已知A商品的进价为24元/件,目前每星期可卖出200件A商品,市场调查反映:如调整A商品价格,每降价1元,每星期可多卖出20件,如何定价才能使A商品的利润最大?最大利润是多少?
5.(2023 湖北)加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中1000m2的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/m2)与其种植面积x(单位:m2)的函数关系如图所示,其中200 x 700;乙种蔬菜的种植成本为50元/m2.
(1)当x= m2时,y=35元/m2;
(2)设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W最小?
(3)学校计划今后每年在这1000m2土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降.若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降a%,当a为何值时,2025年的总种植成本为28920元?
类型六 二次函数的综合
1.(2023 湖北)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2+bx﹣6(a≠0)与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,连接BC.
(1)抛物线的解析式为 ;(直接写出结果)
(2)在图1中,连接AC并延长交BD的延长线于点E,求∠CEB的度数;
(3)如图2,若动直线l与抛物线交于M,N两点(直线l与BC不重合),连接CN,BM,直线CN与BM交于点P.当MN∥BC时,点P的横坐标是否为定值,请说明理由.
2.(2023 西宁)如图,在平面直角坐标系中,直线l与x轴交于点A(6,0),与y轴交于点B(0,﹣6),抛物线经过点A,B,且对称轴是直线x=1.
(1)求直线l的解析式;
(2)求抛物线的解析式;
(3)点P是直线l下方抛物线上的一动点,过点P作PC⊥x轴,垂足为C,交直线1于点D,过点P作PM⊥l,垂足为M.求PM的最大值及此时P点的坐标.
3.(2023 赤峰)定义:在平面直角坐标系xOy中,当点N在图形M的内部,或在图形M上,且点N的横坐标和纵坐标相等时,则称点N为图形M的“梦之点”.
(1)如图①,矩形ABCD的顶点坐标分别是A(﹣1,2),B(﹣1,﹣1),C(3,﹣1),D(3,2),在点M1(1,1),M2(2,2),M3(3,3)中,是矩形ABCD“梦之点“的是 ;
(2)点G(2,2)是反比例函数y1=图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H的坐标是 ,直线GH的解析式是y2= ,y1>y2时,x的取值范围是 ;
(3)如图②,已知点A,B是抛物线y=﹣x2+x+上的“梦之点”,点C是抛物线的顶点.连接AC,AB,BC,判断△ABC的形状,并说明理由.
4.(2023 新疆)【建立模型】(1)如图1,点B是线段CD上的一点,AC⊥BC,AB⊥BE,ED⊥BD,垂足分别为C,B,D,AB=BE.求证:△ACB≌△BDE;
【类比迁移】(2)如图2,一次函数y=3x+3的图象与y轴交于点A、与x轴交于点B,将线段AB绕点B逆时针旋转90°得到BC,直线AC交x轴于点D.
①求点C的坐标;
②求直线AC的解析式;
【拓展延伸】(3)如图3,抛物线y=x2﹣3x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于C点,已知点Q(0,﹣1),连接BQ,抛物线上是否存在点M,使得tan∠MBQ=,若存在,求出点M的横坐标.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
备考2024中考二轮数学《高频考点冲刺》(全国通用)
专题10 二次函数问题
考点扫描☆聚焦中考
二次函数问题是中考的重点内容,近几年各地中考题目主要以选择题与解答题的形式考查,也可能在填空题中出现,题目难度中高档;考查内容主要有:二次函数的性质与图象;用待定系数法确定函数解析式;二次函数的最值与平移问题;与方程、不等式、几何知识结合的综合题等;考查热点主要有:二次函数的性质与图象;通过具体问题情境学会用三种方式表示二次函数关系;通过在实际问题中应用二次函数的性质,发展应用二次函数解决实际问题的能力。
考点剖析☆典型例题
例1 (2022 株洲)已知二次函数y=ax2+bx﹣c(a≠0),其中b>0、c>0,则该函数的图象可能为( )
A.B. C.D.
【答案】C
【点拨】根据c>0,可知﹣c<0,可排除A,D选项,当a>0时,可知对称轴<0,可排除B选项,当a<0时,可知对称轴>0,可知C选项符合题意.
【解析】解:∵c>0,
∴﹣c<0,
故A,D选项不符合题意;
当a>0时,
∵b>0,
∴对称轴x=<0,
故B选项不符合题意;
当a<0时,b>0,
∴对称轴x=>0,
故C选项符合题意,
故选:C.
【点睛】本题考查了二次函数的图象,熟练掌握二次函数的图象与系数的关系是解题的关键.
例2(2023 兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是( )
A.对称轴为直线x=﹣2 B.顶点坐标为(2,3)
C.函数的最大值是﹣3 D.函数的最小值是﹣3
【答案】C
【点拨】利用二次函数的性质进行判断即可.
【解析】解:二次函数y=﹣3(x﹣2)2﹣3的图象的开口向下,对称轴为直线x=2,顶点坐标为(2,﹣3),
x=2时,y有最大值为y=﹣3,
故选:C.
【点睛】本题考查二次函数的最值问题,解题关键是掌握二次函数的性质.
例3(2023 达州)如图,抛物线y=ax2+bx+c(a,b,c为常数)关于直线x=1对称.下列五个结论:
①abc>0;②2a+b=0;③4a+2b+c>0;④am2+bm>a+b;⑤3a+c>0.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
【答案】B
【点拨】由抛物线开口方向以及与y轴的交点可知a>0,c<0,根据对称轴为直线x=1得出b=﹣2a<0,即可判断①;由对称轴为直线x=1得出2a+b=0,即可判断②;由抛物线的对称性即可判断③;根据函数的最值即可判断④,由x=﹣1时,y>0,得出a﹣b+c>0,由b=﹣2a得出3a+c>0即可判断⑤.
【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数)关于直线x=1对称,
∴﹣=1,
∵a>0,
∴b=﹣2a<0,
∵c<0,
∴abc>0,
故①正确;
∵b=﹣2a,
∴2a+b=0,
故②正确;
∵x=0时,y<0,对称轴为直线x=1,
∴x=2时,y<0,
∴4a+2b+c<0,
故③错误;
∵抛物线开口向上,对称轴为直线x=1,
∴am2+bm+c≥a+b+c,即am2+bm≥a+b,
故④错误;
∵x=﹣1时,y>0,
∴a﹣b+c>0,
∵b=﹣2a,
∴3a+c>0.
故⑤正确.
故选:B.
【点睛】本题考查二次函数图象与系数的关系,二次函数图象上点的坐标特征,熟练掌握二次函数的图象与性质是解题的关键.
例4(2023 西藏)将抛物线y=(x﹣1)2+5平移后,得到抛物线的解析式为y=x2+2x+3,则平移的方向和距离是( )
A.向右平移2个单位长度,再向上平移3个单位长度
B.向右平移2个单位长度,再向下平移3个单位长度
C.向左平移2个单位长度,再向上平移3个单位长度
D.向左平移2个单位长度,再向下平移3个单位长度
【答案】D
【点拨】先确定两个抛物线的顶点坐标,再利用点平移的规律确定抛物线平移的情况.
【解析】解:抛物线y=(x﹣1)2+5的顶点坐标为(1,5),抛物线y=x2+2x+3=(x+1)2+2的顶点坐标为(﹣1,2),
而点(1,5)向左平移2个,再向下平移3个单位可得到(﹣1,2),
所以抛物线y=(x﹣1)2+5向左平移2个,再向下平移3个单位得到抛物线y=x2+2x+3.
故选:D.
【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
例5(2023 无锡)二次函数y=x2+(2m﹣1)x+2m(m≠),有下列结论:
①该函数图象过定点(﹣1,2);
②当m=1时,函数图象与x轴无交点;
③函数图象的对称轴不可能在y轴的右侧;
④当1<m<时,点P(x1,y1),Q(x2,y2)是曲线上两点,若﹣3<x1<﹣2,﹣<x2<0,则y1>y2.
其中,正确结论的序号为 ①②④ .
【答案】①②④.
【点拨】抛物线整理为y=x2+(2m﹣1)x+2m=x2+2mx﹣x+2m=2m(x+1)+x2﹣x可判断①,将m=1代入并计算b2﹣4ac即可判断②,计算抛物线对称轴并根据m≠可判断③,根据题意确定对称轴的范围后可确定P、Q的位置,再根据增减性可判断④.
【解析】解:y=x2+(2m﹣1)x+2m=x2+2mx﹣x+2m=2m(x+1)+x2﹣x,
当x=﹣1时,y=2,
∴该函数图象过定点(﹣1,2),故①正确;
当m=1时,y=x2+x+2,
∵b2﹣4ac=1﹣4×2=﹣7<0,
∴函数图象与x轴无交点,故②正确;
抛物线的对称轴为:x=,
∵m≠,
∴,
∴当m>时,对称轴在y轴左侧,当m<时,对称轴在y轴右侧,故③错误;
∵,
∴﹣1<﹣m<﹣,
∵﹣3<x1<﹣2,﹣<x2<0,
∴P(x1,y1)在对称轴左侧,Q(x2,y2)在对称轴右侧,
∵a=1>0,
∴抛物线开口向上,在对称轴左侧,y随x增大而减小,在对称轴右侧,y随x增大而增大,
∴当x=﹣2时,y1最小=y=4﹣4m+2+2m=﹣2m+6,
当x=0时,y2最大=2m,
此时,y1﹣y2=﹣4m+6,
∵,
∴﹣4m+6>0,
∴y1>y2,故④正确,
故答案为:①②④.
【点睛】本题考查的是二次函数的综合题,解题的关键是熟练理解并综合运用二次函数的各个特征.
例6(2023 丽水)已知点(﹣m,0)和(3m,0)在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图象上.
(1)当m=﹣1时,求a和b的值;
(2)若二次函数的图象经过点A(n,3)且点A不在坐标轴上,当﹣2<m<﹣1时,求n的取值范围;
(3)求证:b2+4a=0.
【答案】(1)a的值是﹣1,b的值是﹣2;
(2)﹣4<n<﹣2;
(3)证明见解析.
【点拨】(1)当m=﹣1时,二次函数y=ax2+bx+3图象过点(1,0)和(﹣3,0),用待定系数法可得a的值是﹣1,b的值是﹣2;
(2)y=ax2+bx+3图象过点(﹣m,0)和(3m,0),可知抛物线的对称轴为直线x=m,而y=ax2+bx+3的图象过点A(n,3),(0,3),且点A不在坐标轴上,可得m=,根据﹣2<m<﹣1,即得﹣4<n<﹣2;
(3)由抛物线过(﹣m,0),(3m,0),可得﹣=m,b=﹣2am,把 (﹣m,0),(3m,0)代入y=ax2+bx+3变形可得am2+1=0,故b2+4a=(﹣2am)2+4a=4a(am2+1)=4a×0=0.
【解析】(1)解:当m=﹣1时,二次函数y=ax2+bx+3图象过点(1,0)和(﹣3,0),
∴,
∴解得,
∴a的值是﹣1,b的值是﹣2;
(2)解:∵y=ax2+bx+3图象过点(﹣m,0)和(3m,0),
∴抛物线的对称轴为直线x=m,
∵y=ax2+bx+3的图象过点A(n,3),(0,3),且点A不在坐标轴上,
∴由图象的对称性得n=2m,
∴m=,
∵﹣2<m<﹣1,
∴﹣2<<﹣1,
∴﹣4<n<﹣2;
(3)证明:∵抛物线过(﹣m,0),(3m,0),
∴抛物线对称轴为直线x==m,
∴﹣=m,
∴b=﹣2am,
把(﹣m,0),(3m,0)代入y=ax2+bx+3得:
,
①×3+②得:12am2+12=0,
∴am2+1=0,
∴b2+4a=(﹣2am)2+4a=4a(am2+1)=4a×0=0.
【点睛】本题考查二次函数图象上点坐标的特征,涉及待定系数法,不等式,方程组等知识,解题的关键是整体思想的应用.
例7(2023 辽宁)商店出售某品牌护眼灯,每台进价为40元,在销售过程中发现,月销量y(台)与销售单价x(元)之间满足一次函数关系,规定销售单价不低于进价,且不高于进价的2倍,其部分对应数据如下表所示:
销售单价x(元) … 50 60 70 …
月销量y(台) … 90 80 70 …
(1)求y与x之间的函数关系式;
(2)当护眼灯销售单价定为多少元时,商店每月出售这种护眼灯所获的利润最大?最大月利润为多少元?
【答案】见解析
【点拨】(1)设月销量y(台)与销售单价x(元)之间满足一次函数关系式为y=kx+b,把(50,90)和(60,80)代入解方程组即可得到结论;(2)设每月出售这种护眼灯所获的利润为w元,根据题意得到二次函数解析式,根据二次函数的性质即可得到结论.
【解析】解:(1)设月销量y(台)与销售单价x(元)之间满足一次函数关系式为y=kx+b,
把(50,90)和(60,80)代入得,
解得,
∴y=﹣x+140;
(2)∵规定销售单价不低于进价,且不高于进价的2倍,
∴40≤x≤80,
设每月出售这种护眼灯所获的利润为w元,
根据题意得,w=(x﹣40)y=(x﹣40)(﹣x+140)=﹣x2+180x﹣5600=﹣(x﹣90)2+2500,
∴当护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元.
【点睛】本题主要考查了二次函数的应用,解题的关键是列出关系式,熟练掌握二次函数的性质,准确计算.
例8(2023 山西)综合与探究
如图,二次函数y=﹣x2+4x的图象与x轴的正半轴交于点A,经过点A的直线与该函数图象交于点B(1,3),与y轴交于点C.
(1)求直线AB的函数表达式及点C的坐标;
(2)点P是第一象限内二次函数图象上的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,设点P的横坐标为m.
①当时,求m的值;
②当点P在直线AB上方时,连接OP,过点B作BQ⊥x轴于点Q,BQ与OP交于点F,连接DF.设四边形FQED的面积为S,求S关于m的函数表达式,并求出S的最大值.
【答案】(1)y=﹣x+4,点C的坐标为(0,4);
(2)①2或3或 ;②,S的最大值为.
【点拨】(1)利用待定系数法可求得直线AB的函数表达式,再求得点C的坐标即可;
(2)①分当点P在直线AB上方和点P在直线AB下方时,两种情况讨论,根据 PD=2 列一元二次方程 求解即可;
②证明△FOQ∽△POE,推出 FQ=﹣m+4,再证明四边形FQED为矩形,利用矩形面积公式得到二次 函数的表达式,再利用二次函数的性质即可求解.
【解析】解:(1)由 y=﹣x2+4x 得,当 y=0 时,﹣x2+4x=0,
解得 x1=0,x2=4,
∵点A在x轴正半轴上.
∴点A的坐标为(4,0).
设直线AB的函数表达式为 y=kx+b(k≠0).
将A,B两点的坐标 (4,0),(1,3)分别代入 y=kx+b,
得 ,
解得,
∴直线AB的函数表达式为 y=﹣x+4.
将x=0代入 y=﹣x+4,得 y=4.
∴点C的坐标为(0,4);
(2)①解:∵点P在第一象限内二次函数 y=﹣x2+4x的图象上,且PE⊥x轴于点E,与直线AB交于点D,其横坐标为m.
∴点P,D的坐标分别为 P(m,﹣m2+4m),D(m,﹣m+4),
∴PE=﹣m2+4m.DE=﹣m+4,OE=m,
∵点C的坐标为(0,4),
∴OC=4. ,
∴PD=2.
如图1,当点P在直线AB上方时,PD=PE﹣DE=﹣m2+4m﹣(﹣m+4)=﹣m2+5m﹣4,
∵PD=2,
∴﹣m2+5m﹣4=2,
解得 m1=2.m2=3.
如图2,当点P在直线AB下方时,PD=DE﹣PE=﹣m+4﹣(﹣m2+4m)=m2﹣5m+4,
∵PD=2,
∴m2﹣5m+4=2,
解得 ,
∵0<m<1,m=.
综上所述,m的值为2或3或;
②解:如图3,
由(2)①得,OE=m,PE=﹣m2+4m,DE=﹣m+4.
∵BQ⊥x轴于点Q,交OP于点F,点B的坐标为(1,3),
∴OQ=1,
∵点P在直线AB上方,
∴EQ=m﹣1.
∵PE⊥x轴于点E,
∴∠OQF=∠OEP=90°,
∴FQ∥DE,∠FOQ=∠POE,
∴△FOQ∽△POE,
∴,
∴,
∴,
∴FQ=DE,
∴四边形FQED为平行四边形,
∵PE⊥x轴,
∴四边形FQED为矩形.
∴S=EQ FQ=(m﹣1)(﹣m+4),即S=﹣m2+5m﹣4=,
∵﹣1<0,1<m<4,
∴当m=时,S的最大值为;
【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,特殊四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建二次函数解决问题,属于中考压轴题.
考点过关☆专项突破
类型一 二次函数的图象与性质
1.(2023 沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】B
【点拨】首先确定二次函数的顶点坐标,然后根据点的坐标特点写出顶点的位置.
【解析】解:∵y=﹣(x+1)2+2,
∴顶点坐标为(﹣1,2),
∴顶点在第二象限.
故选:B.
【点睛】本题考查了二次函数的性质,解题的关键是确定二次函数的顶点坐标.
2.(2021 江西)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )
A.B. C. D.
【答案】D
【点拨】根据二次函数y=ax2与一次函数y=bx+c的图象,即可得出a>0、b>0、c<0,由此即可得出:二次函数y=ax+bx+c的图象开口向上,对称轴x=﹣<0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.
【解析】解:观察函数图象可知:a>0,b>0,c<0,
∴二次函数y=ax2+bx+c的图象开口向上,对称轴x=﹣<0,与y轴的交点在y轴负半轴.
故选:D.
【点睛】本题考查了一次函数的图象以及二次函数的图象,根据二次函数图象和一次函数图象经过的象限,找出a>0、b>0、c<0是解题的关键.
3.(2023 陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有( )
A.最大值5 B.最大值 C.最小值5 D.最小值
【答案】D
【点拨】将(0,6)代入二次函数解析式,进而得出m的值,再利用对称轴在y轴左侧,得出m=3,再利用公式法求出二次函数最值.
【解析】解:由题意可得:6=m2﹣m,
解得:m1=3,m2=﹣2,
∵二次函数y=x2+mx+m2﹣m,对称轴在y轴左侧,
∴m>0,
∴m=3,
∴y=x2+3x+6,
∴二次函数有最小值为:==.
故选:D.
【点睛】此题主要考查了二次函数的性质以及二次函数的最值,正确得出m的值是解题关键.
4.(2023 衢州)已知二次函数y=ax2﹣4ax(a是常数,a<0)的图象上有A(m,y1)和B(2m,y2)两点.若点A,B都在直线y=﹣3a的上方,且y1>y2,则m的取值范围是( )
A. B. C. D.m>2
【答案】C
【点拨】根据已知条件列不等式即可得到结论.
【解析】解:∵a<0,
∴y=﹣3a>0,
∵A(m,y1)和B(2m,y2)两点都在直线y=﹣3a的上方,且y1>y2,
∴4am2﹣8am>﹣3a,
∴4m2﹣8m+3<0,
∴<m<①,
∵二次函数y=ax2﹣4ax(a是常数,a<0)的图象上有A(m,y1)和B(2m,y2)两点.
∴am2﹣4am>4am2﹣8am,
∴3am2<4am,
∵a<0,m>0,
∴am<0,
∴m>②,
由①②得<m<.
故选:C.
【点睛】本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,正确地列出不等式是解题的关键.
5.(2023 大连)已知二次函数y=x2﹣2x﹣1,当0≤x≤3时,函数的最大值为( )
A.﹣2 B.﹣1 C.0 D.2
【答案】D
【点拨】根据二次函数的图象,结合当0≤x≤3时函数图象的增减情况,即可解决问题.
【解析】解:由二次函数的表达式为y=x2﹣2x﹣1可知,
抛物线开口向上,对称轴为直线x==1.
又1﹣0<3﹣1,
所以当x=3时,函数取得最大值,
y=32﹣2×3﹣1=2.
故选:D.
【点睛】本题考查二次函数的最值,能由二次函数的表达式得出抛物线的对称轴及开口方向是解题的关键.
6.(2023 扬州)已知二次函数y=ax2﹣2x+(a为常数,且a>0),下列结论:①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x<0时,y随x的增大而减小;④当x>0时,y随x的增大而增大.其中所有正确结论的序号是( )
A.①② B.②③ C.② D.③④
【答案】B
【点拨】由a的正负可确定出抛物线的开口方向,结合函数的性质逐项判断即可.
【解析】解:∵a>0时,抛物线开口向上,
∴对称轴为直线x==>0,
当x<0时,y随x的增大而减小,
当x>时,y随x的增大而增大,
∴函数图象一定不经过第三象限,函数图象可能经过第一、二、四象限.
故选:B.
【点睛】本题主要考查二次函数的性质,掌握a决定二次函数的开口方向,进一步能确定出其最值是解题的关键.
7.(2021 福建)二次函数y=ax2﹣2ax+c(a>0)的图象过A(﹣3,y1),B(﹣1,y2),C(2,y3),D(4,y4)四个点,下列说法一定正确的是( )
A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
【答案】C
【点拨】观察图象可知,y1>y4>y2>y3,再结合题目一一判断即可.
【解析】解:如图,由题意对称轴为直线x=1,
观察图象可知,y1>y4>y2>y3,
若y1y2>0,如图1中,则y3y4<0,选项A不符合题意,
若y1y4>0,如图2中,则y2y3<0,选项B不符合题意,
若y2y4<0,如图3中,则y1y3<0,选项C符合题意,
若y3y4<0,如图4中,则y1y2>0,选项D不符合题意,
故选:C.
【点睛】本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
8.(2022 长春)已知二次函数y=﹣x2﹣2x+3,当a≤x≤时,函数值y的最小值为1,则a的值为 ﹣1﹣ .
【答案】﹣1﹣.
【点拨】函数配方后得y=﹣x2﹣2x+3=﹣(x+1)2+4,当y=1时,﹣(x+1)2+4=1,可得x=﹣1±,因为﹣1+>,所以﹣1﹣≤x≤时,函数值y的最小值为1,进而可以解决问题.
【解析】解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴图象开口向下,顶点坐标为(﹣1,4),
根据题意,当a≤x≤时,函数值y的最小值为1,
当y=1时,﹣(x+1)2+4=1,
∴x=﹣1±,
∵﹣1+>,
∴﹣1﹣≤x≤时,函数值y的最小值为1,
∴a=﹣1﹣.
故答案为:﹣1﹣.
【点睛】本题考查了二次函数的性质,二次函数的最值,熟练掌握二次函数的增减性质是解题的关键.
9.(2023 福建)已知抛物线y=ax2﹣2ax+b(a>0)经过A(2n+3,y1),B(n﹣1,y2)两点,若A,B分别位于抛物线对称轴的两侧,且y1<y2,则n的取值范围是 ﹣1<n<0 .
【答案】﹣1<n<0.
【点拨】由题意可知:抛物线的对称轴为x=1,开口向上,再分点A在对称轴x=1的左侧,点B在对称轴x=1的右侧和点B在对称轴x=1的左侧,点A在对称轴x=1的右侧两种情况求解即可.
【解析】解:抛物线的对称轴为:x=﹣=1,
∵a>0,
∴抛物线开口向上,
∵y1<y2,
∴若点A在对称轴x=1的左侧,点B在对称轴x=1的右侧,
由题意可得:,
不等式组无解;
若点B在对称轴x=1的左侧,点A在对称轴x=1的右侧,
由题意可得:,
解得:﹣1<n<0,
∴n的取值范围为:﹣1<n<0.
故答案为:﹣1<n<0.
【点睛】本题主要考查的是二次函数的性质以及二次函数图象上点的坐标的特征,能根据题意正确列出不等式组是解决本题的关键.
10.(2023 北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c(a>0)上任意两点,设抛物线的对称轴为x=t.
(1)若对于x1=1,x2=2,有y1=y2,求t的值;
(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.
【答案】(1);
(2)t≤.
【点拨】(1)根据二次函数的性质求得对称轴即可,
(2)根据题意判断出离对称轴更近的点,从而得出(x1,y1)与(x2,y2)的中点在对称轴的右侧,再根据对称性即可解答.
【解析】解:(1)∵对于x1=1,x2=2,有y1=y2,
∴a+b+c=4a+2b+c,
∴3a+b=0,
∴=﹣3.
∵对称轴为x=﹣=,
∴t=.
(2)∵0<x1<1,1<x2<2,
∴,x1<x2,
∵y1<y2,a>0,
∴(x1,y1)离对称轴更近,x1<x2,则(x1,y1)与(x2,y2)的中点在对称轴的右侧,
∴>t,
即t≤.
【点睛】本题考查二次函数的性质,熟练掌握二次函数的对称性是解题关键.
类型二 二次函数的图象与系数的关系
1.(2023 阜新)如图,二次函数y=ax2+bx+c的图象与x轴的一个交点为(3,0),对称轴是直线x=1,下列结论正确的是( )
A.abc<0 B.2a+b=0 C.4ac>b2 D.点(﹣2,0)在函数图象上
【答案】B
【点拨】利用二次函数的图象与系数的关系可得出,a、b、c的正负,进而得出abc的正负;利用对称轴为直线x=1,可得出2a+b与0的关系;由抛物线与x轴的交点情况,可得出b2与4ac的大小关系;由抛物线与x轴的一个交点坐标为(3,0),再结合对称轴为直线x=1,可得出另一个交点坐标.
【解析】解:A:由二次函数的图形可知:a>0,b<0,c<0,所以abc>0.故A错误.
B:因为二次函数的对称轴是直线x=1,则=1,即2a+b=0.故B正确.
C:因为抛物线与x轴有两个交点,所以b2﹣4ac>0,即4ac<b2.故C错误.
D:因为抛物线与x轴的一个交点坐标为(3,0),且对称轴为直线x=1,所以它与x轴的另一个交点的坐标为(﹣1,0).故D错误.
故选:B.
【点睛】本题考查二次函数图象与各项系数的关系,正确求得a,b,c的正负以及巧妙利用抛物线的对称轴是解决问题的关键.
2.(2023 雅安)如图,二次函数y=ax2+bx+c的图象与x轴交于A(﹣2,0),B两点,对称轴是直线x=2,下列结论中,所有正确结论的序号为( )
①a>0; ②点B的坐标为(6,0); ③c=3b; ④对于任意实数m,都有4a+2b≥am2+bm.
A.①② B.②③ C.②③④ D.③④
【答案】C
【点拨】通过抛物线开口方向,对称轴,抛物线与y轴交点可判断①、②、③,通过x=2时抛物线取得最大值判断4a+2b≥am2+bm,进而求解.
【解析】解:∵抛物线开口向下,
∴a<0,①错误,
∵A、B关于对称轴x=2对称,
∴B点的横坐标为6,②正确,
∵二次函数y=ax2+bx+c的对称轴为直线x=2,
∴﹣=2,
∴,
把(﹣2,0)代入y=ax2+bx+c,得:
4a﹣2b+c=0,
∴﹣2b+c=0,整理得:
c=3b,③正确,
∵二次函数y=ax2+bx+c的对称轴为直线x=2,
∴当x=2时,抛物线取得最大值为y=4a+2b+c,
当x=m时,y=am2+bm+c,
∴4a+2b+c≥am2+bm+c,
即4a+2b≥am2+bm,④正确.
∴所有正确结论的序号为②③④.
故选:C.
【点睛】本题考查二次函数图象与系数的关系,解题关键是灵活运用二次函数图象和性质.
3.(2023 黄石)已知二次函数y=ax2+bx+c(a≠0)的图象经过三点A(x1,y1),B(x2,y2),C(﹣3,0),且对称轴为直线x=﹣1.有以下结论:①a+b+c=0;②2c+3b=0;③当﹣2<x1<﹣1,0<x2<1时,有y1<y2;④对于任何实数k>0,关于x的方程ax2+bx+c=k(x+1)必有两个不相等的实数根.其中结论正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【点拨】根据二次函数的对称轴为直线x=﹣1和经过点C(﹣3,0),再结合抛物线的对称性即可解决问题.
【解析】解:因为二次函数的图象过点C(﹣3,0),且对称轴为直线x=﹣1,
所以由抛物线的对称性可知,点(1,0)也在抛物线上.
将(1,0)代入二次函数解析式得,
a+b+c=0.
故①正确.
因为抛物线的对称轴是直线x=﹣1,
所以,即b﹣2a=0.
又a+b+c=0,
则将a=﹣b﹣c代入b﹣2a=0得,
2c+3b=0.
故②正确.
因为﹣2<x1<﹣1,0<x2<1,
所以点A离对称轴更近.
则当a>0时,y1<y2;
当a<0时,y1>y2.
故③错误.
由ax2+bx+c=k(x+1)得,
ax2+(b﹣k)x+c﹣k=0.
又a+b+c=0,2c+3b=0,
得.
则(b﹣k)2﹣4a(c﹣k)
=()2﹣4×()(c﹣k)
=.
又k>0,
所以>0.
即该方程有两个不相等的实数根.
故④正确.
故选:C.
【点睛】本题考查二次函数的图象与系数的关系及二次函数图象上点的坐标特征,能根据抛物线的对称轴及经过定点得出a,b,c的关系是解题的关键.
4.(2023 遂宁)抛物线y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣2.下列说法:①abc<0;②c﹣3a>0;③4a2﹣2ab≥at(at+b)(t为全体实数);④若图象上存在点A(x1,y1)和点B(x2,y2),当m<x1<x2<m+3时,满足y1=y2,则m的取值范围为﹣5<m<﹣2,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【点拨】①分别判断a、b、c的符号,再判断abc的符号;
②由对称轴为直线x=﹣2,可知a与b的数量关系,消去b可得仅含a、c的解析式,找特定点可判断c﹣3a的符号.
③用a与b的数量关系,可将原式化简得到关于t的不等式,再用函数的性质(t为全体实数)判断.
④利用二次函数的性质及二次函数与一元二次方程的关系即可判断.
【解析】解:①因图象开口向下,可知:a<0;
又∵对称轴为直线x=﹣2,
∴﹣=﹣2,整理得:b=4a,即a、b同号.
由图象可知,当x=4时,y<0,
又∵对称轴为直线x=﹣2,可知:当x=0时,y<0;
即c<0;
∴abc<0,故①正确.
②由①得:b=4a.
代入原解析式得:y=ax2+4ax+c;
由图象可知,当x=﹣1时,y>0.
即:a (﹣1)2+4a (﹣1)+c>0,
整理得:c﹣3a>0,故②正确.
③设4a2﹣2ab≥at(at+b)
则4a﹣2b≤at t﹣bt,
两边+c得到4a﹣2b+c≤at t﹣bt+c,
左侧为x=﹣2时的函数值,右侧为x=t时的函数值,
显然不成立,
故③错误.
④由题意得,x1、x2是一元二次方程ax2+bx+c﹣y1=0的两个根,
从图象上看,因二次函数有对称性,x1、x2关于x=﹣2对称,
∴当且仅当m<﹣2<m+3时,存在点A(x1,y1)和点B(x2,y2),当m<x1<x2<m+3时,满足y1=y2,
即当﹣5<m<﹣2时,满足题设,故④正确.
故本题选:C.
【点睛】本题考查了二次函数字母系数与图象的关系、二次函数与一元二次方程的关系等知识.需综合利用二次函数的性质,不等式的性质解题.
5.(2023 湖北)抛物线y=ax2+bx+c(a<0)与x轴相交于点A(﹣3,0),B(1,0).下列结论:①abc<0;②b2﹣4ac>0;③3b+2c=0;④若点P(m﹣2,y1),Q(m,y2)在抛物线上,且y1<y2,则m≤﹣1.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【点拨】根据二次函数的性质及数形结合思想进行判定.
【解析】解:①由题意得:y=ax2+bx+c=a(x+3)(x﹣1)=ax2+2ax﹣3a,
∴b=2a,c=﹣3a,
∵a<0,
∴b<0,c>0,
∴abc>0,
故①是错误的;
②∵抛物线y=ax2+bx+c(a<0)与x轴相交于点A(﹣3,0),B(1,0).
∴ax2+bx+c=0有两个不相等的实数根,
∴b2﹣4ac>0,
故②是正确的;
③∵b=2a,c=﹣3a,
∴3b+2c=6a﹣6a=0,
故③是正确的;
④∵抛物线y=ax2+bx+c(a<0)与x轴相交于点A(﹣3,0),B(1,0).
∴抛物线的对称轴为:x=﹣1,
当点P(m﹣2,y1),Q(m,y2)在抛物线上,且y1<y2,
∴m≤﹣1或,
解得:m<0,
故④是错误的,
故选:B.
【点睛】本题考查了二次函数与系数的关系,掌握二次函数的性质及数形结合思想是解题的关键.
6.(2023 南京)已知二次函数y=ax2﹣2ax+3(a为常数,a≠0).
(1)若a<0,求证:该函数的图象与x轴有两个公共点.
(2)若a=﹣1,求证:当﹣1<x<0时,y>0.
(3)若该函数的图象与x轴有两个公共点(x1,0),(x2,0),且﹣1<x1<x2<4,则a的取值范围是 a>3或a<﹣1 .
【答案】(1)证明见解析过程;
(2)证明见解析过程;
(3)a>3或a<﹣1.
【点拨】(1)证明b2﹣4ac>0即可解决问题.
(2)将a=﹣1代入函数解析式,进行证明即可.
(3)对a>0和a<0进行分类讨论即可.
【解析】证明:(1)因为(﹣2a)2﹣4×a×3=4a2﹣12a,
又因为a<0,
所以4a<0,a﹣3<0,
所以4a2﹣12a=4a(a﹣3)>0,
所以该函数的图象与x轴有两个公共点.
(2)将a=﹣1代入函数解析式得,
y=﹣x2+2x+3=﹣(x﹣1)2+4,
所以抛物线的对称轴为直线x=1,开口向下.
则当﹣1<x<0时,
y随x的增大而增大,
又因为当x=﹣1时,y=0,
所以y>0.
(3)因为抛物线的对称轴为直线x=,且过定点(0,3),
又因为该函数的图象与x轴有两个公共点(x1,0),(x2,0),且﹣1<x1<x2<4,
所以当a>0时,
a﹣2a+3<0,
解得a>3,
故a>3.
当a<0时,
a+2a+3<0,
解得a<﹣1,
故a<﹣1.
综上所述,a>3或a<﹣1.
故答案为:a>3或a<﹣1.
【点睛】本题考查二次函数的图象和性质,熟知二次函数的图象和性质是解题的关键.
类型三 二次函数的图象变换
1.(2022 泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是( )
A.y=﹣x2+x B.y=﹣x2﹣4 C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+1
【答案】D
【点拨】根据抛物线的平移规律,可得答案.
【解析】解:∵将抛物线y=﹣x2+x+1经过平移后开口方向不变,开口大小也不变,
∴抛物线y=﹣x2+x+1经过平移后不可能得到的抛物线是y=﹣x2+x+1.
故选:D.
【点睛】本题考查了二次函数图象与几何变换,由平移规律得出a不变是解题的关键.
2.(2023 徐州)在平面直角坐标系中,将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为( )
A.y=(x+3)2+2 B.y=(x﹣1)2+2 C.y=(x﹣1)2+4 D.y=(x+3)2+4
【答案】B
【点拨】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
【解析】解:将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为y=(x+1﹣2)2+3﹣1,即y=(x﹣1)2+2.
故选:B.
【点睛】本题主要考查二次函数的几何变换,掌握“左加右减,上加下减”的法则是解题的关键.
3.(2020 衢州)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )
A.向左平移2个单位,向下平移2个单位 B.向左平移1个单位,向上平移2个单位
C.向右平移1个单位,向下平移1个单位 D.向右平移2个单位,向上平移1个单位
【答案】C
【点拨】求出平移后的抛物线的解析式,利用待定系数法解决问题即可.
【解析】解:A、平移后的解析式为y=(x+2)2﹣2,当x=2时,y=14,本选项不符合题意.
B、平移后的解析式为y=(x+1)2+2,当x=2时,y=11,本选项不符合题意.
C、平移后的解析式为y=(x﹣1)2﹣1,当x=2时,y=0,函数图象经过(2,0),本选项符合题意.
D、平移后的解析式为y=(x﹣2)2+1,当x=2时,y=1,本选项不符合题意.
故选:C.
【点睛】本题考查二次函数图象与几何变换,二次函数图象上点的特征,解题的关键是熟练掌握基本知识,属于中考常考题型.
4.(2020 陕西)在同一平面直角坐标系中,若抛物线y=mx2+2x﹣n与y=﹣6x2﹣2x+m﹣n关于x轴对称,则m,n的值为( )
A.m=﹣6,n=﹣3 B.m=﹣6,n=3 C.m=6,n=﹣3 D.m=6,n=3
【答案】D
【点拨】根据关于x轴对称,函数y是互为相反数即可求得.
【解析】解:∵抛物线y=mx2+2x﹣n与y=﹣6x2﹣2x+m﹣n关于x轴对称,
∴﹣y=﹣mx2﹣2x+n,
∴y=﹣mx2﹣2x+n与y=﹣6x2﹣2x+m﹣n相同,
∴﹣m=﹣6,n=m﹣n,
解得m=6,n=3,
故选:D.
【点睛】本题考查了二次函数图象与几何变换,根据关于x轴对称的坐标特征把抛物线y=mx2+2x﹣n化成关于x轴对称的抛物线的解析式是解题的关键.
5.(2022 黔东南州)在平面直角坐标系中,将抛物线y=x2+2x﹣1先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是 (1,﹣3) .
【答案】(1,﹣3).
【点拨】先求出绕原点旋转180°的抛物线解析式,再求出向下平移5个单位长度的解析式,配成顶点式即可得答案.
【解析】解:将抛物线y=x2+2x﹣1绕原点旋转180°后所得抛物线为:﹣y=(﹣x)2+2(﹣x)﹣1,即y=﹣x2+2x+1,
再将抛物线y=﹣x2+2x+1向下平移5个单位得y=﹣x2+2x+1﹣5=﹣x2+2x﹣4=﹣(x﹣1)2﹣3,
∴所得到的抛物线的顶点坐标是(1,﹣3),
故答案为:(1,﹣3).
【点睛】本题考查二次函数图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.
6.(2023 益阳)我们在学习一次函数、二次函数图象的平移时知道:将一次函数y=2x的图象向上平移1个单位得到y=2x+1的图象;将二次函数y=x2+1的图象向左平移2个单位得到y=(x+2)2+1的图象,若将反比例函数y=的图象向下平移3个单位,如图所示,则得到的图象对应的函数表达式是 y=﹣3 .
【答案】y=﹣3.
【点拨】根据“上加下减,左加右减”的原则进行解答即可.
【解析】解:由题意,将反比例函数y=的图象向下平移3个单位,得到的图象对应的函数表达式为y=﹣3.
故答案为:y=﹣3.
【点睛】本题考查的是一次函数、二次函数、反比例函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.
7.(2022 河北)如图,点P(a,3)在抛物线C:y=4﹣(6﹣x)2上,且在C的对称轴右侧.
(1)写出C的对称轴和y的最大值,并求a的值;
(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=﹣x2+6x﹣9.求点P′移动的最短路程.
【答案】(1)对称轴是直线x=6,y的最大值为4,a=7;
(2)5.
【点拨】(1)根据抛物线的顶点式,判断出顶点坐标,令y=3,转化为方程求出a即可;
(2)求出平移前后的抛物线的顶点的坐标,可得结论.
【解析】解:(1)∵抛物线C:y=4﹣(6﹣x)2=﹣(x﹣6)2+4,
∴抛物线的顶点为Q(6,4),
∴抛物线的对称轴为直线x=6,y的最大值为4,
当y=3时,3=﹣(x﹣6)2+4,
∴x=5或7,
∵点P在对称轴的右侧,
∴P(7,3),
∴a=7;
(2)∵平移后的抛物线的解析式为y=﹣(x﹣3)2,
∴平移后的顶点Q′(3,0),
∵平移前抛物线的顶点Q(6,4),
∴点P′移动的最短路程=QQ′==5.
【点睛】本题考查二次函数的性质,解题的关键是理解题意,求出平移前后的抛物线的顶点坐标,属于中考常考题型.
类型四 二次函数的图象与x轴的交点
1.(2023 郴州)已知抛物线y=x2﹣6x+m与x轴有且只有一个交点,则m= 9 .
【答案】9
【点拨】利用判别式Δ=b2﹣4ac=0即可得出结论.
【解析】解:∵抛物线y=x2﹣6x+m与x轴有且只有一个交点,
∴方程x2﹣6x+m=0有唯一解.
即Δ=b2﹣4ac=36﹣4m=0,
解得:m=9.
故答案为:9.
【点睛】本题考查了抛物线与x轴的交点知识,明确Δ=b2﹣4ac决定抛物线与x轴的交点个数是解题的关键.
2.(2023 甘孜州)下列关于二次函数y=(x﹣2)2﹣3的说法正确的是( )
A.图象是一条开口向下的抛物线 B.图象与x轴没有交点
C.当x<2时,y随x增大而增大 D.图象的顶点坐标是(2,﹣3)
【答案】D
【点拨】由二次函数解析式可得抛物线开口方向、对称轴、顶点坐标,与x轴的交点个数,由此解答即可.
【解析】解:A、∵a=1>0,图象的开口向上,故此选项不符合题意;
B、∵y=(x﹣2)2﹣3=x2﹣4x+1,
∴Δ=(﹣4)2﹣4×1×1=12>0,
即图象与x轴有两个交点,
故此选项不符合题意;
C、∵抛物线开口向上,对称轴为直线x=2,
∴当x<2时,y随x增大而减小,
故此选项不符合题意;
D、∵y=(x﹣2)2﹣3,
∴图象的顶点坐标是(2,﹣3),
故此选项符合题意;
故选:D.
【点睛】本题考查了二次函数的图象性质,解题的关键是掌握二次函数图象与系数的关系.
3.(2023 陕西)如表中列出的是一个二次函数的自变量x与函数y的几组对应值:
x … ﹣3 0 3 5 …
y … 16 ﹣5 ﹣8 0 …
则下列关于这个二次函数的结论中,正确的是( )
A.图象的顶点在第一象限 B.有最小值﹣8
C.图象与x轴的一个交点是(﹣1,0) D.图象开口向下
【答案】C
【点拨】由表格中的几组数求得二次函数的解析式,然后通过函数的性质得到结果.
【解析】解:设二次函数的解析式为y=ax2+bx+c,
由题意知,
解得,
∴二次函数的解析式为y=x2﹣4x﹣5=(x﹣5)(x+1)=(x﹣2)2﹣9,
∴函数的图象开口向上,顶点为(2,﹣9),图象与x轴的交点是(﹣1,0)和(5,0),
∴顶点在第四象限,函数有最小值﹣9,
故A、B、D选项不正确,选项C正确,符合题意.
故选:C.
【点睛】本题考查了二次函数的性质,解题的关键是学会根据表格中的信息求得函数的解析式.
4.(2023 衡阳)已知m>n>0,若关于x的方程x2+2x﹣3﹣m=0的解为x1,x2(x1<x2),关于x的方程x2+2x﹣3﹣n=0的解为x3,x4(x3<x4).则下列结论正确的是( )
A.x3<x1<x2<x4 B.x1<x3<x4<x2
C.x1<x2<x3<x4 D.x3<x4<x1<x2
【答案】B
【点拨】画出抛物线y=x2+2x﹣3,直线y=m,直线y=n,根据一元二次方程与二次函数的关系,观察图象可得答案.
【解析】解:关于x的方程x2+2x﹣3﹣m=0的解为抛物线y=x2+2x﹣3与直线y=m的交点的横坐标,
关于x的方程x2+2x﹣3﹣n=0的解为抛物线y=x2+2x﹣3与直线y=n的交点的横坐标,
如图:
由图可知,x1<x3<x4<x2,
故选:B.
【点睛】本题考查一元二次方程与二次函数的关系,解题的关键是画出图象,数形结合解决问题.
5.(2023 巴中)规定:如果两个函数的图象关于y轴对称,那么称这两个函数互为“Y函数”.例如:函数y=x+3与y=﹣x+3互为“Y函数”.若函数y=x2+(k﹣1)x+k﹣3的图象与x轴只有一个交点,则它的“Y函数”图象与x轴的交点坐标为 (3,0)或(4,0) .
【答案】(3,0)或(4,0).
【点拨】根据关于y轴对称的图形的对称点的坐标特点,分情况讨论求出它的“Y函数”图象与x轴的交点坐标.
【解析】解:当k=0时,函数解析式为y=﹣x﹣3,
它的“Y函数”解析式为y=x﹣3,它们的图象与x轴都只有一个交点,
∴它的“Y函数”图象与x轴的交点坐标为(3,0);
当k≠0时,此函数为二次函数,
若二次函数的图象与x轴只有一个交点,
则二次函数的顶点在x轴上,
即,
解得k=﹣1,
∴二次函数的解析式为=,
∴它的“Y函数”解析式为,
令y=0,
则,
解得x=4,
∴二次函数的“Y函数”图象与x轴的交点坐标为(4,0),
综上,它的“Y函数”图象与x轴的交点坐标为(3,0)或(4,0).
故答案为:(3,0)或(4,0).
【点睛】本题考查了新定义,二次函数与x轴的交点坐标,坐标与图形变换——轴对称,求一次函数解析式和二次函数解析式,理解题意,采用分类讨论的思想是解题的关键.
6.(2023 云南)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.
同学们,请你结合所学的数学解决下列问题.
在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象为图象T.
(1)求证:无论a取什么实数,图象T与x轴总有公共点;
(2)是否存在整数a,使图象T与x轴的公共点中有整点?若存在,求所有整数a的值;若不存在,请说明理由.
【答案】(1)证明见解析;
(2)a=﹣2或a=﹣1或a=0或a=1.
【点拨】(1)分一次函数和二次函数分别证明函数图象T与x轴总有交点即可;
(2)当a=﹣时,不符合题意;当a≠时,由0=(4a+2)x2+(9﹣6a)x﹣4a+4,得x=﹣或x=,即x==2﹣,因a是整数,故当2a+1是6的因数时,是整数,可得2a+1=﹣6或2a+1=﹣3或2a+1=﹣2或2a+1=﹣1或2a+1=1或2a+1=2或2a+1=3或2a+1=6,分别解方程并检验可得a=﹣2或a=﹣1或a=0或a=1.
【解析】(1)证明:当a=﹣时,函数表达式为y=12x+6,
令y=0得x=﹣,
∴此时函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象与x轴有交点;
当a≠时,y=(4a+2)x2+(9﹣6a)x﹣4a+4为二次函数,
∵Δ=(9﹣6a)2﹣4(4a+2)(﹣4a+4)=100a2﹣140a+49=(10a﹣7)2≥0,
∴函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象与x轴有交点;
综上所述,无论a取什么实数,图象T与x轴总有公共点;
(2)解:存在整数a,使图象T与x轴的公共点中有整点,理由如下:
当a=﹣时,不符合题意;
当a≠﹣时,
在y=(4a+2)x2+(9﹣6a)x﹣4a+4中,令y=0得:0=(4a+2)x2+(9﹣6a)x﹣4a+4,
解得x=﹣或x=,
∵x==2﹣,a是整数,
∴当2a+1是6的因数时,是整数,
∴2a+1=﹣6或2a+1=﹣3或2a+1=﹣2或2a+1=﹣1或2a+1=1或2a+1=2或2a+1=3或2a+1=6,
解得a=﹣或a=﹣2或a=﹣或a=﹣1或a=0或a=或a=1或a=,
∵a是整数,
∴a=﹣2或a=﹣1或a=0或a=1.
【点睛】本题考查抛物线与x轴的交点,其中还涉及了一次函数,二次函数与一元二次方程的关系,解题的关键是理解整点的意义.
类型五 二次函数的实际应用
1.(2023 宜昌)如图,一名学生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣(x﹣10)(x+4),则铅球推出的距离OA= 10 m.
【答案】10.
【点拨】令y=0,得到关于x的方程,解方程即可得出结论.
【解析】解:令y=0,则﹣(x﹣10)(x+4)=0,
解得:x=10或x=﹣4(不合题意,舍去),
∴A(10,0),
∴OA=10m.
故答案为:10.
【点睛】本题主要考查了二次函数的应用,熟练掌握二次函数的性质和利用点的坐标表示出相应线段的线段是解题的关键.
2.(2023 滨州)某广场要建一个圆形喷水池,计划在池中心位置竖直安装一根顶部带有喷水头的水管,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心的水平距离也为3m,那么水管的设计高度应为 m .
【答案】m.
【点拨】利用顶点式求得抛物线的解析式,再令x=0,求得相应的函数值,即为所求的答案.
【解析】解:由题意可知点(1,3)是抛物线的顶点,
∴设这段抛物线的解析式为y=a(x﹣1)2+3.
∵该抛物线过点(3,0),
∴0=a(3﹣1)2+3,
解得:a=﹣.
∴y=﹣(x﹣1)2+3.
∵当x=0时,y=﹣×(0﹣1)2+3=﹣+3=,
∴水管的设计高度应为m.
故答案为:m.
【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握待定系数法及二次函数的相关性质是解题的关键.
3.(2023 天津)如图,要围一个矩形菜园ABCD,其中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m,有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD面积为192m2;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
【答案】C
【点拨】设AD边长为x m,则AB边长为长为m,根据AB=6列出方程,解方程求出x的值,根据x取值范围判断①;根据矩形的面积=192.解方程求出x的值可以判断②;设矩形菜园的面积为y m2,
根据矩形的面积公式列出函数解析式,再根据函数的性质求函数的最值可以判断③.
【解析】解:设AD边长为x m,则AB边长为m,
当AB=6时,=6,
解得x=28,
∵AD的长不能超过26m,
∴x≤26,
故①不正确;
∵菜园ABCD面积为192m2,
∴x =192,
整理得:x2﹣40x+384=0,
解得x=24或x=16,
∴AB的长有两个不同的值满足菜园ABCD面积为192m2,
故②正确;
设矩形菜园的面积为y m2,
根据题意得:y=x =﹣(x2﹣40x)=﹣(x﹣20)2+200,
∵﹣<0,20<26,
∴当x=20时,y有最大值,最大值为200.
故③正确.
∴正确的有2个,
故选:C.
【点睛】此题主要考查了一元二次方程和二次函数的应用,读懂题意,找到等量关系准确地列出函数解析式和方程是解题的关键.
4.(2023 德州)某商场购进了A,B两种商品,若销售10件A商品和20件B商品,则可获利280元;若销售20件A商品和30件B商品,则可获利480元.
(1)求A,B两种商品每件的利润;
(2)已知A商品的进价为24元/件,目前每星期可卖出200件A商品,市场调查反映:如调整A商品价格,每降价1元,每星期可多卖出20件,如何定价才能使A商品的利润最大?最大利润是多少?
【答案】(1)A商品每件的利润为12元,B商品每件的利润为8元.
(2)定价为35元时,利润最大,最大为2420元.
【点拨】(1)根据题意列出二元一次方程组解答即可;
(2)根据“商品利润=单件利润×销售数量“,列出二次函数解析式,将其化成顶点式,再结合“售价=进价+利润“解答即可.
【解析】解:(1)设A商品每件的利润为x元,B商品每件的利润为元,
根据题意,得,
解得:,
答:A商品每件的利润为12元,B商品每件的利润为8元.
(2)设降价a元利润为w元根据题意,得:
w=(12﹣a)(200+20a),
=2400+240a﹣200a﹣20a,
=﹣20a2+40a+2400,
=﹣20(a﹣1)2+2420.
∵﹣20<0.
∴当 a=1 时,w有最大值,最大值为2420,此时定价 24+12﹣1=35(元).
答:定价为35元时,利润最大,最大为2420元.
【点睛】本题主要考查了二元一次方程组和二次函数的应用,读懂题意并能列出等量关系式是解答本题的关键.
5.(2023 湖北)加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中1000m2的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/m2)与其种植面积x(单位:m2)的函数关系如图所示,其中200 x 700;乙种蔬菜的种植成本为50元/m2.
(1)当x= 500 m2时,y=35元/m2;
(2)设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W最小?
(3)学校计划今后每年在这1000m2土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降.若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降a%,当a为何值时,2025年的总种植成本为28920元?
【答案】(1)500;
(2)当种植甲种蔬菜的种植面积为400m2,乙种蔬菜的种植面积为600m2 时,W最小;
(3)当a为20时,2025年的总种植成本为28920元.
【点拨】(1)当200≤x≤600时,由待定系数法求出一次函数关系式,当600<x≤700时,y=40,再求出当y=35时y的值,即可得出结论;
(2)当200≤x≤600时,W=(x﹣400)2+42000,由二次函数的性质得当x=400时,W有最小值,最小值为42000,再求出当600≤x≤700时,W=﹣10x+50000,由一次函数的性质得当x=700时,W有最小值为43000,然后比较即可;
(3)根据2025年的总种植成本为28920元,列出一元二次方程,解方程即可.
【解析】解:(1)当200≤x≤600时,设甲种蔬菜种植成本y(单位;元/m2 )与其种植面积x(单位:m2 )的函数关系式为y=kx+b,
把(200,20),(600,40)代入得:,
解得:,
∴,
当600<x≤700时,y=40,
∴当y=35时,35=x+10,
解得:x=500,
故答案为:500;
(2)当200≤x≤600时,W=x(x+10)+50(1000﹣x)=(x﹣400)2+42000,
∵,
∴抛物线开口向上,
∴当x=400时,W有最小值,最小值为42000,
此时,1000﹣x=1000﹣400=600,
当600≤x≤700时,W=40x+50(1000﹣x)=﹣10x+50000,
∵﹣10<0,
∴当x=700时,W有最小值为:﹣10×700+50000=43000,
∵42000<43000,
∴当种植甲种蔬菜的种植面积为400m2,乙种蔬菜的种植面积为600m2时,W最小;
(3)由(2)可知,甲、乙两种蔬菜总种植成本为42000元,乙种蔬菜的种植成本为50×600=30000(元),
则甲种蔬菜的种植成本为42000﹣30000=12000(元),
由题意得:12000(1﹣10%)2+30000(1﹣a%)2=28920,
设a%=m,
整理得:(1﹣m)2=0.64,
解得:m1=0.2=20%,m2=1.8(不符合题意,舍去),
∴a%=20%,
∴a=20,
答:当a为20时,2025年的总种植成本为28920元.
【点睛】本题考查了二次函数的应用、一元二次方程的应用以及一次函数的应用等知识,解题的关键:(1)用待定系数法正确求出一次函数关系式;(2)找出数量关系,正确求出二次函数关系式;(3)找准等量关系,正确列出一元二次方程.
类型六 二次函数的综合
1.(2023 湖北)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2+bx﹣6(a≠0)与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,连接BC.
(1)抛物线的解析式为 y= ;(直接写出结果)
(2)在图1中,连接AC并延长交BD的延长线于点E,求∠CEB的度数;
(3)如图2,若动直线l与抛物线交于M,N两点(直线l与BC不重合),连接CN,BM,直线CN与BM交于点P.当MN∥BC时,点P的横坐标是否为定值,请说明理由.
【答案】(1)y=.
(2)∠CEB=45°.
(3)3,理由见解析.
【点拨】(1)利用待定系数法即可求解.
(2)求出直线AC,BD的解析式,联立得出点E的坐标,根据题意,作辅助线,得出,证明△ABC∽△AEB,根据相似三角形的性质即可求解.
(3)设点M,点N的坐标,求出直线BC、CN、BM的解析式,联立即可求解.
【解析】解:(1)∵抛物线y=ax2+bx﹣6(a≠0)与x轴交于点A(﹣2,0),B(6,0),
∴,
解得,
∴抛物线解析式为y=.
故答案为:y=.
(2)∵A(﹣2,0),C(0,﹣6),
设直线AC的解析式为y=k1x+b1,
∴,
解得,
∴直线AC的解析式为y=﹣3x﹣6,
同理,由点D(2,﹣8),B(6,0),可得直线BD的解析式为y=2x﹣12,
令﹣3x﹣6=2x﹣12,
解得x=,
∴点E的坐标为(),
由题意可得,OA=2,OB=OC=6,AB=8,
∴AC=,
如图,过点E作EF⊥x轴于点F,
∴AE=,
∴,
∴,
∵∠BAC=∠EAB,
∴△ABC∽△AEB,
∴∠ABC=∠AEB,
∵OB=OC,∠COB=90°,
∴∠ABC=45°,
∵∠AEB=45°,
∴∠CEB=45°,
答:∠CEB的度数为45°.
(3)设点M的坐标为(m,),点N的坐标为(n,),
∵直线MN与BC不重合,
∴m≠0且m≠6,n≠0且n≠6,
如图,
由点B(6,0),点C(0,﹣6),可得直线BC的解析式为y=x﹣6,
∵MN∥BC,
设直线MN的解析式为y=x+t,
∴x+t=,
∴
∴m+n=6
∴点N的坐标可以表示为(6﹣m,),
设直线CN的解析式为y=k2x+b2,
∴,
解得,
∴直线CN的解析式为y=,
同上,可得直线BM的解析式为y=,
∴=,
∴mx=3m,
∴x=3,
∴点P的横坐标为定值3.
【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,一次函数的平移,熟练掌握二次函数的性质是解题的关键.
2.(2023 西宁)如图,在平面直角坐标系中,直线l与x轴交于点A(6,0),与y轴交于点B(0,﹣6),抛物线经过点A,B,且对称轴是直线x=1.
(1)求直线l的解析式;
(2)求抛物线的解析式;
(3)点P是直线l下方抛物线上的一动点,过点P作PC⊥x轴,垂足为C,交直线1于点D,过点P作PM⊥l,垂足为M.求PM的最大值及此时P点的坐标.
【答案】(1)y=x﹣6;
(2)y=(x﹣1)2﹣;
(3)PM的最大值是,此时点P(3,﹣).
【点拨】(1)运用待定系数法即可求得答案;
(2)根据抛物线的对称轴是直线x=1,可设y=a(x﹣1)2+k,利用待定系数法即可求得答案;
(3)由∠PCA=90°,∠OAB=45°,可得∠PDM=∠ADC=45°,利用解直角三角形可得PM=PD,设点P(t,t2﹣t﹣6),则D(t,t﹣6),可得PD=t﹣6﹣(t2﹣t﹣6)=﹣t2+t=﹣(t﹣3)2+,利用二次函数的性质即可求得答案.
【解析】解:(1)设直线l的解析式为y=mx+n(m≠0),
∵直线l与x轴交于点A(6,0),与y轴交于点B(0,﹣6),
∴,
解得:,
∴直线l的解析式为y=x﹣6;
(2)设抛物线的解析式为y=a(x﹣h)2+k(a≠0),
∵抛物线的对称轴是直线x=1,
∴y=a(x﹣1)2+k,
∵抛物线经过点A,B,
∴,
解得:,
∴抛物线的解析式为y=(x﹣1)2﹣;
(3)∵A(6,0),B(0,﹣6),
∴OA=OB=6,
在△AOB中,∠AOB=90°,
∴∠OAB=∠OBA=45°,
∵PC⊥x轴,PM⊥l,
∴∠PCA=∠PND=90°,
在Rt△ADC中,∵∠PCA=90°,∠OAB=45°,
∴∠ADC=45°,
∴∠PDM=∠ADC=45°,
在Rt△PMD中,∠PMD=90°,∠PDM=45°,
∴sin45°=,
∴PM=PD,
∵y=(x﹣1)2﹣=x2﹣x﹣6,
∴设点P(t,t2﹣t﹣6),
∴D(t,t﹣6),
∴PD=t﹣6﹣(t2﹣t﹣6)=﹣t2+t=﹣(t﹣3)2+,
∵﹣<0,
∴当t=3时,PD有最大值是,此时PM最大,
PM=PD=×=,
当t=3时,t2﹣t﹣6=×9﹣×3﹣6=﹣,
∴P(3,﹣),
∴PM的最大值是,此时点P(3,﹣).
【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,解直角三角形等,本题难度适中,熟练掌握待定系数法和二次函数的图象和性质是解题关键.
3.(2023 赤峰)定义:在平面直角坐标系xOy中,当点N在图形M的内部,或在图形M上,且点N的横坐标和纵坐标相等时,则称点N为图形M的“梦之点”.
(1)如图①,矩形ABCD的顶点坐标分别是A(﹣1,2),B(﹣1,﹣1),C(3,﹣1),D(3,2),在点M1(1,1),M2(2,2),M3(3,3)中,是矩形ABCD“梦之点“的是 M1,M2 ;
(2)点G(2,2)是反比例函数y1=图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H的坐标是 H(﹣2,﹣2) ,直线GH的解析式是y2= x ,y1>y2时,x的取值范围是 x<﹣2或0<x<2 ;
(3)如图②,已知点A,B是抛物线y=﹣x2+x+上的“梦之点”,点C是抛物线的顶点.连接AC,AB,BC,判断△ABC的形状,并说明理由.
【答案】(1)M1,M2;
(2)H(﹣2,﹣2),x,x<﹣2或0<x<2;
(3)△ABC是直角三角形,理由见解析.
【点拨】(1)根据“梦之点”的定义判断这几个点是否在矩形的内部或边上;
(2)把G(2,2)代入y1=求出解析式,再求于y=x的交点即为H,最后根据函数的图象判断y1>y2时,x的取值范围;
(3)根据“梦之点”的定义求出点A,B的坐标,再求出顶点C的坐标,最后求出AC,AB,BC,即可判断△ABC的形状.
【解析】解:(1)∵矩形ABCD的顶点坐标分别是A(﹣1,2),B(﹣1,﹣1),C(3,﹣1),D(3,2),
∴矩形ABCD的“梦之点”(x,y)满足﹣1≤x≤3,﹣1≤y≤2,
∴点M1(1,1),M2(2,2)是矩形ABCD的“梦之点”,点M3(3,3)不是矩形ABCD的“梦之点”,
故答案为:M1,M2;
(2)∵点G(2,2)是反比例函数y1=图象上的一个“梦之点”,
∴把G(2,2)代入y1=得k=4,
∴y1=,
∵“梦之点”的横坐标和纵坐标相等,
∴“梦之点”都在y=x的图象上,联立,
解得或,
∴H(﹣2,﹣2),
∴直线GH的解析式为y2=x,
∴y1>y2时,x的取值范围是x<﹣2或0<x<2,
故答案为:H(﹣2,﹣2),x,x<﹣2或0<x<2;
(3)△ABC是直角三角形,
理由:∵点A,B是抛物线y=﹣上的“梦之点”,
∴y=y2,
即﹣x2+x+=x,
解得x1=3,x2=﹣3,
∴当x=3时,y=3,当x=﹣3时,y=﹣3,,
∴A(3,3),B(﹣3,﹣3),
∵y=﹣=﹣(x﹣1)2+5,
∴顶点C(1,5),
∴AC2=(3﹣1)2+(3﹣5)2=8,AB2=(﹣3﹣3)2+(﹣3﹣3)2=72,BC2=(﹣3﹣1)2+(﹣3﹣5)2=80,
∴BC2=AC2+AB2,
∴△ABC是直角三角形.
【点睛】本题是二次函数的综合题,考查了一次函数,反比例函数,二次函数,理解坐标与图形性质,熟练掌握两点间的距离公式,理解新定义是解题的关键.
4.(2023 新疆)【建立模型】(1)如图1,点B是线段CD上的一点,AC⊥BC,AB⊥BE,ED⊥BD,垂足分别为C,B,D,AB=BE.求证:△ACB≌△BDE;
【类比迁移】(2)如图2,一次函数y=3x+3的图象与y轴交于点A、与x轴交于点B,将线段AB绕点B逆时针旋转90°得到BC,直线AC交x轴于点D.
①求点C的坐标;
②求直线AC的解析式;
【拓展延伸】(3)如图3,抛物线y=x2﹣3x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于C点,已知点Q(0,﹣1),连接BQ,抛物线上是否存在点M,使得tan∠MBQ=,若存在,求出点M的横坐标.
【答案】(1)证明见解析;
(2)①C(﹣4,1);②y=x+3;
(3)抛物线上存在点M,使得tan∠MBQ=,点M的横坐标为﹣或﹣.
【点拨】(1)根据垂直定义可得∠ACB=∠BDE=∠ABE=90°,利用同角的余角相等可得∠A=∠EBD,再利用AAS即可证明△ACB≌△BDE;
(2)①先求得A(0,3),B(﹣1,0),过点C作CG⊥x轴于点G,则∠BGC=90°=∠AOB,进而证得△BCG≌△ABO(AAS),得出BG=OA=3,CG=OB=1,OG=OB+BG=4,即可求得点C的坐标;
②运用待定系数法即可求得直线AC的解析式;
(3)先求得A(﹣1,0),B(4,0),C(0,﹣4),分两种情况:当点M在x轴上方时,当点M在x轴下方时,分别构造直角三角形,利用相似三角形的判定和性质即可求得直线BM上特殊点的坐标,运用待定系数法求得直线BM的解析式,联立方程组求解即可得出点M的坐标.
【解析】(1)证明:∵AC⊥BC,AB⊥BE,ED⊥BD,
∴∠ACB=∠BDE=∠ABE=90°,
∴∠A+∠ABC=90°,∠ABC+∠EBD=90°,
∴∠A=∠EBD,
在△ACB和△BDE中,
,
∴△ACB≌△BDE(AAS);
(2)解:①∵一次函数y=3x+3的图象与y轴交于点A、与x轴交于点B,
∴A(0,3),B(﹣1,0),
∴OA=3,OB=1,
过点C作CG⊥x轴于点G,如图,
则∠BGC=90°=∠AOB,
∴∠CBG+∠BCG=90°,
∵线段AB绕点B逆时针旋转90°得到BC,
∴BC=AB,∠ABC=90°,
∴∠ABO+∠CBG=90°,
∴∠BCG=∠ABO,
∴△BCG≌△ABO(AAS),
∴BG=OA=3,CG=OB=1,
∴OG=OB+BG=1+3=4,
∴C(﹣4,1);
②设直线AC的解析式为y=kx+b,则,
解得:,
∴直线AC的解析式为y=x+3;
(3)解:抛物线上存在点M,使得tan∠MBQ=.
∵抛物线y=x2﹣3x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于C点,
当y=0时,x2﹣3x﹣4=0,
解得:x1=﹣1,x2=4,
∴A(﹣1,0),B(4,0),
当x=0时,y=﹣4,
∴C(0,﹣4),
当点M在x轴上方时,如图,设BM交y轴于点K,过点K作KH⊥BQ于点H,
则∠KHQ=∠KHB=90°,
设K(0,t),
∵Q(0,﹣1),B(4,0),
∴OB=4,OQ=1,KQ=t+1,
在Rt△BQO中,BQ===,
∵∠BOQ=90°,
∴∠KHQ=∠BOQ,
∵∠KQH=∠BQO,
∴△KQH∽△BQO,
∴==,即==,
∴QH=(t+1),KH=(t+1),
∴BH=BQ﹣QH=﹣(t+1)=(16﹣t),
∵tan∠MBQ=,
∴=,
∴BH=3KH,
∴(16﹣t)=3×(t+1),
解得:t=,
∴K(0,),
设直线BK的解析式为y=mx+n,则,
解得:,
∴直线BK的解析式为y=﹣x+,
联立得,
解得:,(舍去),
∴M(﹣,);
当点M在x轴下方时,如图,过点Q作QE⊥BQ,交BM于点E,过点E作EF⊥y轴于点F,
则∠QFE=∠BOQ=∠BQE=90°,
∵tan∠MBQ=,
∴=tan∠MBQ=,
∴EQ=BQ=,
∵∠OBQ+∠BQO=90°,∠BQO+∠EQF=90°,
∴∠OBQ=∠EQF,
∴△QEF∽△BQO,
∴==,即==,
∴EF=,QF=,
∴OF=OQ+QF=1+=,
∴E(,﹣);
设直线BM的解析式为y=m′x+n′,则,
解得:,
∴直线BM的解析式为y=x﹣,
联立,得,
解得:(舍去),,
∴M(﹣,﹣);
综上所述,抛物线上存在点M,使得tan∠MBQ=,点M的横坐标为﹣或﹣.
【点睛】本题是二次函数综合题,考查了待定系数法,勾股定理,直角三角形性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转变换的性质,二次函数的图象及性质,熟练掌握三角形相似的判定及性质,直角三角形的性质,直角三角形的三角函数值,运用分类讨论思想和数形结合思想是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)