九年级数学下册第六章对概率的进一步认识综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不透明布袋中装有除颜色外完全相同的红、白球,已知红、白球共有60个,同学们通过多次试验后发现摸到红色球的频率稳定在左右,则袋中红球个数可能为( )
A.30 B.25 C.20 D.15
2、一个不透明的袋子中装有四个小球,它们除了分别标有的数字1,2,3,6不同外,其他完全相同,任意从袋子中摸出一球后不放回,再任意摸出一球,则两次摸出的球所标数字之积为6的概率是( )
A. B. C. D.
3、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法( )
A.有道理,池中大概有1200尾鱼 B.无道理
C.有道理,池中大概有7200尾鱼 D.有道理,池中大概有1280尾鱼
4、甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制统计图如图所示,符合这一结果的试验可能是( )
A.抛一枚硬币,出现正面的概率
B.任意写一个正整数,它能被 3 整除的概率
C.从一装有 1 个白球和 2 个红球的袋子中任取一球,取到红球的概率
D.掷一枚正方体的骰子,出现 6 点的概率
5、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是( )
移植总数n 400 1500 3500 7000 9000 14000
成活数m 369 1335 3203 6335 8073 12628
成活的频率 0.923 0.890 0.915 0.905 0.897 0.902
A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率
B.可以用试验次数累计最多时的频率作为概率的估计值
C.由此估计这种幼苗在此条件下成活的概率约为0.9
D.如果在此条件下再移植这种幼苗20000株,则必定成活18000株
6、某口袋里现有12个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验600次,其中有300次是红球,估计绿球个数为( )
A.8 B.10 C.12 D.14
7、在一个不透明的袋中装有只有颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后再重复上述步骤;…如表是实验中记录的部分统计数据:
摸球次数 40 50 60 80 100 200
摸到红球次数 19 10 13 16 20 40
则袋中的红球可能有( )A.8个 B.6个 C.4个 D.2个
8、一个不透明的袋子中有1个红球,1个绿球和个白球, 这些球除颜外都相同. 从袋中随机摸出一个球, 记录其颜色, 然后放回. 大量重复该实验, 发现摸到绿球的频率稳定于, 则白球的个数的值可能是 ( )
A.1 B.2 C.4 D.5
9、育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:
抽查小麦粒数 100 300 800 1000 2000 3000
发芽粒数 96 287 770 958 1923 a
则a的值最有可能是( )
A.2700 B.2780 C.2880 D.2940
10、一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,则估计红球的个数约为( )
A.35个 B.60个 C.70个 D.130个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字1,2,3;B袋中的三个小球上分别标记数字2,3,4.这六个小球除标记的数字外,其余完全相同.将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,则摸出的这两个小球标记的数字之和为5的概率为______.
2、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.
3、一个不透明袋子中装有30个小球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中随机摸出1个球,记下颜色后放回搅匀,并重复该过程,获得数据如下:
摸球的次数 200 300 400 1000 1600 2000
摸到白球的频数 72 93 130 334 532 667
摸到白球的频率 0.3600 0.3100 0.3250 0.3340 0.3325 0.3335
该学习小组发现,摸到红球的频率在一个常数附近波动,由此估算出红球个数是__个.
4、现有四张分别标有数字﹣2,﹣1,0,2的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽取一张,记下数字不放回,然后背面朝上洗匀,再随机抽取一张,则两次抽出的卡片上所标数字之和为正数的概率是 _____.
5、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.
三、解答题(5小题,每小题10分,共计50分)
1、某医药公司计划招聘一名科研人员,组织了一场“云招聘”,甲、乙两名应聘者的成绩如下表所示(单位:分).
应聘者 专业知识 创新能力 语言表达
甲 96 92 85
乙 93 88 95
(1)根据实际需要,该公司计划将专业知识、创新能力、语言表达三项按3:5:2的比例计算最后成绩,请计算甲、乙两人的最后成绩.
(2)为了更全面地了解甲、乙两名应聘者的综合素质,公司决定安排一场加试.加试设置三项综合性任务(依次记为A、B、C),要求甲、乙二人分别从这三项任务中随机选择一项完成并提交报告.求甲、乙二人所选任务不相同的概率.
2、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:
(1)这次活动共调查了______人,并补充完整条形统计图;
(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;
(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.
3、将6个球分别放入标有1,2,3,4,5,6这6个号码的盒子中.如图,将一个圆形转盘平均分成3份,分别标上数字1,2,3,现转动转盘两次,两次转得的数字之和是几,从几号盘子中摸出一个球(如:第一次转得数字为2,第二次转得数字为3,则和为5,就从5号盒子中摸球).
(1)求从6号盒子中摸球的概率;
(2)通过计算,判断从几号盒子中摸球的概率最大?
4、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)
①2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);
②1个宣传类岗位:垃圾分类知识宣传(用表示).
(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为________.
(2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他们恰好都选择同一类岗位的概率.
5、随着课后服务的全面展开,某校组织了丰富多彩的社团活动.炯炯和露露分别打算从以下四个社团:A.快乐足球,B.数学历史,C.文学欣赏,D.棋艺鉴赏中,选择一个社团参加.
(1)炯炯选择数学历史的概率为______.
(2)用画树状图或列表的方法求炯炯和露露选择同一个社团的概率.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据利用频率估计概率问题可直接进行求解.
【详解】
解:由题意得:;
故选D.
【点睛】
本题主要考查频率估计概率,熟练掌握利用频率估计概率是解题的关键.
2、D
【解析】
【分析】
先列表展示所有可能的结果数为12,再找出两次摸出的球所标数字之积为6的结果数,然后根据概率的概念计算即可.
【详解】
解:列表如下:
所有等可能的情况有12种,其中两次摸出的球所标数字之积为6的有4种结果,
所以两次摸出的球所标数字之积为6的概率为=.
故答案为:D
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
3、A
【解析】
【分析】
设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解.
【详解】
解:设池中大概有鱼x尾,由题意得:,
解得:,
经检验:是原方程的解;
∴池塘主的做法有道理,池中大概有1200尾鱼;
故选A.
【点睛】
本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键.
4、B
【解析】
【分析】
根据统计图可知频率随着次数的增加稳定在左右,进而求得各项的概率即可求解
【详解】
解:A. 抛一枚硬币,出现正面的概率为
B. 任意写一个正整数,它能被 3 整除的概率为
C. 从一装有 1 个白球和 2 个红球的袋子中任取一球,取到红球的概率为
D. 掷一枚正方体的骰子,出现 6 点的概率为
根据统计图可知频率随着次数的增加稳定在左右,
故选B
【点睛】
本题考查了根据描述求简单概率,用频率估计概率,分别计算概率并结合统计图求解是解题的关键.
5、D
【解析】
【分析】
根据频率估计概率逐项判断即可得.
【详解】
解:A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;
B.可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;
C.由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;
D.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;
故选:D.
【点睛】
本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键.
6、C
【解析】
【分析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解即可.
【详解】
解:设袋中有绿球x个,
由题意得:,
解得:,
经检验,为原方程的解,
故选:C.
【点睛】
本题考查了利用频率估计概率,利用大量试验得到的频率可以估计事件的概率是解决本题的关键.
7、C
【解析】
【分析】
首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.
【详解】
解:∵摸球200次红球出现了40次,
∴摸到红球的概率约为,
∴20个球中有白球20×=4个,
故选:C.
【点睛】
本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.
8、B
【解析】
【分析】
由大量重复实验,摸到绿球的频率估计摸到绿球的概率,根据概率公式列式计算即可求得n的数值.
【详解】
解:∵大量重复实验,发现摸到绿球的频率稳定于0.25,
∴
∴
故选:B
【点睛】
本题考查频率估计概率,准确计算是解题的关键.
9、C
【解析】
【分析】
计算每组小麦的发芽率,根据结果计算.
【详解】
解:∵
∴=2880,
故选:C.
【点睛】
此题考查了数据的频率估计概率,正确掌握频率公式计算频率是解题的关键.
10、C
【解析】
【分析】
根据大量重复试验后频率的稳定值即为概率,进行求解即可.
【详解】
解:∵一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,
∴红球的个数=200×35%=70个,
故选C.
【点睛】
本题主要考查了用频率估计概率,解题的关键在于能够熟练掌握大量重复试验下,频率的稳定值即为概率.
二、填空题
1、
【解析】
【分析】
先列表,再利用表格信息得到所有的等可能的结果数与符合条件的结果数,再利用概率公式进行计算即可.
【详解】
解:列表如下:
1 2 3
2 1+2=3 2+2=4 2+3=5
3 3+1=4 3+2=5 3+3=6
4 4+1=5 4+2=6 4+3=7
可得:所有的等可能的结果数有9种,而和为5的结果数有3种,
摸出的这两个小球标记的数字之和为5的概率为:
故答案为:
【点睛】
本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表或画树状图的方法”是解本题的关键.
2、
【解析】
【分析】
先用列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可.
【详解】
解:记红球为,白球为,列表得:
∵一共有12种情况,摸到两个都是红球有2种,
∴P(两个球都是红球),
故答案是.
【点睛】
本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.
3、10
【解析】
【分析】
通过表格中数据,随着次数的增加,摸到白球的频率越来越稳定在0.3335左右,由此可估算出答案.
【详解】
解:由题意得摸到白球的频率在一个常数附近摆动,这个常数是0.3335
由此估出红球有(个)
故答案为:10.
【点睛】
此题考查了频数与频率,解题的关键是掌握频率的定义.
4、
【解析】
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字之和为正数的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图如下所示:
由树状图可知,一共有16中等可能性的结果数,其中两次抽出的卡片上所标数字之和为正数的结果数有(-1,2),(0,2),(2,-1),(2,0)四种情况,
∴P两次抽出的卡片上所标数字之和为正数,
故答案为:.
【点睛】
本题主要考查了列表法或树状图法求概率.解题的关键在于能够熟练掌握:概率=所求情况数与总情况数之比.
5、
【解析】
【分析】
根据二次函数的性质,对称轴为,进而可得同号,根据列表法即可求得二次函数的对称轴在轴左侧的概率
【详解】
解:二次函数的对称轴在轴左侧
对称轴为,即同号,
列表如下
共有12种等可能结果,其中同号的结果有4种
则二次函数的对称轴在轴左侧的概率为
故答案为:
【点睛】
本题考查了二次函数图象的性质,列表法求概率,掌握二次函数的图象与系数的关系以及列表法求概率是解题的关键.
三、解答题
1、 (1)甲的最后成绩为91.8分,乙的最后成绩为90.9分
(2)
【解析】
【分析】
(1)根据加权平均数的定义列式计算即可;
(2)列表得出共有9种等可能的结果,其中甲、乙二人所选任务不相同的结果有6种,再由概率公式求解即可.
(1)
甲的最后成绩为(96×3+92×5+85×2)÷10=91.8(分),
乙的最后成绩为(93×3+88×5+95×2)÷10=90.9(分).
(2)
甲、乙二人所选任务的结果列表如下:
A B C
A (A,A) (A,B) (A,C)
B (B,A) (B,B) (B,C)
C (C,A) (C,B) (C,C)
由列表可知,共有9种等可能的结果,其中甲、乙二人所选任务不相同的结果有6种,
∴甲、乙二人所选任务不相同的概率为.
【点睛】
本题考查列表法与树状图法求概率以及加权平均数,解答本题的关键是明确题意,用表格列出所有等可能结果.
2、(1)200;补图见解析;(2)81°;(3)
【解析】
【分析】
(1)根据使用支付方式为银行卡的占比为15%,人数为30人即可求得总人数,根据微信支付所占的百分比为乘以总人数即可求得,根据总人数减去微信支付,银行卡,现金,其他方式支付的人数即可求得支付宝支付的人数;
(2)先求得支付宝支付的人数所占比乘以360°即可求得扇形圆心角的度数;
(3)根据列表法求概率即可.
【详解】
解:(1)(人)
故答案为:200
其中使用微信支付的有:(人)
使用支付宝支付的有:(人)
(2)
故答案为:81°
(3)将微信记为A,支付宝记为B,银行卡记为C,列表格如下:
A B C
A
B
C
共有9种等可能性的结果,其中两人恰好选择同一种支付方式的结果有3种,
则P(两人恰好选择同一种支付方式)
【点睛】
本题考查了扇形统计图与条形统计图信息关联,求条形统计图某项数据,求扇形统计图圆心角,列表法求概率,掌握以上知识是解题的关键.
3、 (1)
(2)4号
【解析】
【分析】
(1)先利用树状图展示所有9种等可能的结果,再找出符合条件的情况数,最后利用概率公式计算;
(2)分别计算出从各个盒子中摸球的概率,再比较即可.
(1)
解:如图,
共有9种等可能的结果,其中两次摸出的小球所标注数字之和为6的结果数为1,
∴从6号盒子中摸球的概率为;
(2)
由树状图可知:
从1号盒子中摸球的概率为:,
从2号盒子中摸球的概率为:,
从3号盒子中摸球的概率为:,
从4号盒子中摸球的概率为:,
从5号盒子中摸球的概率为:,
从6号盒子中摸球的概率为:,
∴从4号盒子中摸球的概率最大.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
4、(1);(2)
【解析】
【分析】
(1)利用概率公式,即可求解;
(2)根据题意画出树状图,得到共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,再利用概率公式,即可求解
【详解】
解:东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为.
(2)根据题意画图如下:
共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,则他们恰好都选择同一类岗位的概率是
【点睛】
本题主要考查了利用画树状图法或列表法求概率,熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.
5、 (1)
(2)炯炯和露露选择同一个社团的概率为
【解析】
【分析】
(1)直接由概率公式求解即可;
(2)画树状图,共有16种等可能的结果,其中炯炯和露露选同一个社团的有4种结果,再由概率公式求解即可.
(1)
∵共有A.快乐足球,B.数学历史,C.文学欣赏,D.棋艺鉴赏四个社团,数学历史是其中一个社团,
∴炯炯选择数学历史的概率为,
故答案为:;
(2)
画树状图如下:
共有16种等可能的结果,其中炯炯和露露选同一个社团的有4种结果,
∴P(炯炯和露露选择同一个社团)=
【点睛】
此题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.