专题06 最值必会模型之阿氏圆精讲练(原卷版+解析版)

文档属性

名称 专题06 最值必会模型之阿氏圆精讲练(原卷版+解析版)
格式 zip
文件大小 2.4MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-04-21 21:38:19

文档简介

中小学教育资源及组卷应用平台
专题06最值必会模型之阿氏圆精讲练(中考数学)
学校:___________姓名:___________班级:___________考号:___________
考 点 精 讲
“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。
1.当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理;
2.当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。
此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。即点P在直线上运动和点P在圆上运动。
点P在圆周上运动的类型称之为“阿氏圆”问题。
模型建立:
PA+kPB的最小值。
阿氏圆钥匙:
构造母子三角形相似
阿氏圆口诀:
两定一动阿氏圆,母子相似很简单。
第一步:确动点的运动轨迹(圆),
以点0为圆心、r为半径画圆;
(若圆已经画出则可省略这一步)
第二步:连接动点至圆心0
(将系数不为1的线段的固定端点
与圆心相连接),即连接OP,OB。
第三步:计算这两条线段长度的比k;
第五步:在0B上取点C,使得OC= k OP ; =k, ∠O= ∠O,
可得△ POC ∽ △ BOP
可得: =k, PC=k PB
第六步:则PA+kPB ≥PA+PC ≥AC,即当A,P,C 三点共线时可得最小值。
[提升:若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到 括号外边,将其中一条线段的系数化成,再构造△相似进行计算.]
如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是  .
思路引领:在AB上取一点T,使得AT=1,连接PT,PA,CT.证明△PAT∽△BAP,推出,推出PTPB,推出PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.
答案详解:在AB上取一点T,使得AT=1,连接PT,PA,CT.
∵PA=2.AT=1,AB=4,
∴PA2=AT AB,
∴,
∵∠PAT=∠PAB,
∴△PAT∽△BAP,
∴,
∴PTPB,
∴PB+CP=CP+PT,
∵PC+PT≥TC,
在Rt△ACT中,∵∠CAT=90°,AT=1,AC=4,
∴CT,
∴PB+PC,
∴PB+PC的最小值为.
故答案为.
实战训练
一、填空题
1.如图,正方形的边长为4,的半径为2,为上的动点,则的最大值是 .
【答案】2
【详解】解法1
如图:以为斜边构造等腰直角三角形,连接,,
∴,,
四边形正方形

又 ,
在与中

故答案为:2.
解法2
如图:连接、、
根据题意正方形的边长为4,的半径为2

在上做点,使,则,连接
在与中

,则
在上做点,使,则,连接
在与中

,则
如图所示连接
在与中
,,
故答案为:2.
2.如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则PA+PB的最小值为 .
【答案】
【详解】解:设⊙O半径为r,
OP=r=BC=2,OB=r=2,
取OB的中点I,连接PI,
∴OI=IB=,
∵, ,
∴ ,∠O是公共角,
∴△BOP∽△POI,
∴,
∴PI=PB,
∴AP+PB=AP+PI,
∴当A、P、I在一条直线上时,AP+PB最小,
作IE⊥AB于E,
∵∠ABO=45°,
∴IE=BE=BI=1,
∴AE=AB BE=3,
∴AI=,
∴AP+PB最小值=AI=,
∵PA+PB=(PA+PB),
∴PA+PB的最小值是AI=.
故答案是.
3.如图,在 中,,,,D、E分别是边、上的两个动点,且,P是的中点,连接,,则的最小值为 .
【答案】
【详解】解:如图,在上取一点F,使得,连接,,
∵,,,
∴,
∵,,
∴,
∵,
∴,
∴,
∴,
∴,
∵,,
∴,
∴的最小值为,
故答案为.
4.如图,与轴、轴的正半轴分别相交于点、点,半径为3,点,点,点在弧上移动,连接,,则的最小值为 .
【答案】
【详解】解:如图,在轴上取点,连接,
点,点,点,
,,,
,,




当点在上时,有最小值为的长,

故答案为:.
5.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为 .
【答案】5
【详解】分析: 由PD PC=PD PG≤DG,当点P在DG的延长线上时,PD PC的值最大,最大值为DG=5.
详解: 在BC上取一点G,使得BG=1,如图,
∵,,
∴,
∵∠PBG=∠PBC,
∴△PBG∽△CBP,
∴,
∴PG=PC,
当点P在DG的延长线上时,PD PC的值最大,最大值为DG==5.
故答案为5
点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.
6.如图,在中,,,,以点为圆心,6为半径的圆上有一个动点.连接、、,则的最小值是 .
【答案】
【详解】解:在CA上截取CM,使得CM=4,连接DM,BM.
∵CD=6,CM=4,CA=9,
∴,
∴,
∵∠DCM=∠ACD,
∴△DCM∽△ACD,
∴ ,
∴DM=AD,
∴ AD+BD=DM+BD,
∵DM+BD≥BM,
在Rt△CBM中,∵∠CMB=90°,CM=4,BC=12,
∴BM=,
∴ AD+BD≥,
∴ AD+BD的最小值为.
故答案为.
7.如图所示的平面直角坐标系中,,,是第一象限内一动点,,连接、,则的最小值是 .
【答案】
【详解】解:如图,取点,连接,.
,,,
,,,










,(当B、P、T三点共线时取等号)
的最小值为.
故答案为:.
8.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是 .

【答案】
【详解】如下图,在CA上取一点E,使得CE=4

∵AC=9,CD=6,CE=4

∵∠ECD=∠ACD
∴△DCE∽△ACD

∴ED=
在△EDB中,ED+DB≥EB
∴ED+DB最小为EB,即ED+DB=EB

在Rt△ECB中,EB=

∴2AD+3DB=
故答案为:.
二、解答题
9.问题提出:如图,在中,,,,的半径为,为圆上一动点,连接,求的最小值.
(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图,连接,在上取一点,使,则.又,所以.所以.所以,所以.请你完成余下的思考,并直接写出答案:的最小值为 ;
(2)自主探索:在“问题提出”的条件不变的前提下,求的最小值;
(3)拓展延伸:如图,已知在扇形COD中,,,,,是上一点,求的最小值.
【答案】(1)
(2)
(3)
【详解】(1)解:如图连接,
∵,要使最小,
∴当最小,当点在同一条直线时,最小,
∴的最小值为,
在中,,,
∴,
∴的最小值为,
故答案为:;
(2)解:如图连接,在上取点,使,
∴,
∵,
∴,
∴,
∴,
∴的最小值为,
故答案为:;
(3)解:如图延长到点,使,
∴,
连接,
∵,,
∴,
∵,
∴,
∴,
∴,
∴,
∴当三点共线时,取得最小值:,
故答案为:.
本题考查勾股定理,相似三角形判定及性质,最值得确定.
10.如图1,抛物线与轴交于两点,与轴交于点,其中点的坐标为,抛物线的对称轴是直线.
(1)求抛物线的解析式;
(2)若点是直线下方的抛物线上一个动点,是否存在点使四边形的面积为16,若存在,求出点的坐标若不存在,请说明理由;
(3)如图2,过点作交抛物线的对称轴于点,以点为圆心,2为半径作,点为上的一个动点,求的最小值.
【答案】(1)
(2)或
(3)
【详解】(1)解:∵抛物线与轴交于两点,与轴交于点,点的坐标为,抛物线的对称轴是直线,
∴,

解得,
抛物线解析式为:,
(2)当,即,
解得,


设直线解析式为,

解得,
直线解析式为,
设,过点作轴交直线于点,
则,

四边形的面积为16,

解得,
或,
(3)如图,过点作交抛物线的对称轴于点,以点为圆心,2为半径作,
是抛物线的对称轴,


,,


在上取,过点作,交轴于点,交抛物线对称轴于点,则 ,


,,




当三点共线时,取得最小值,最小值为,

则的最小值为.
11.如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD
(1)求证:△BDC≌△AFC
(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;
(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.
【答案】(1)见解析;(2)或 ;(3)
【详解】(1)证明: ∵四边形CDEF是正方形,
∴CF=CD,∠DCF=∠ACB=90°,
∴∠ACF=∠DCB,
∵AC=CB,
∴△FCA≌△DCB(SAS);
(2)解:如图2中,当点D,E在AB边上时,
∵AC=BC=2,∠ACB=90°,
∴,
∵CD⊥AB,
∴AD=BD=,
∴BD+AD=;
如图3中,当点E,F在边AB上时.
BD=CF= ,
AD==,
∴BD+AD=,
综上所述,BD+AD的值或;
(3)如图4中.取AC的中点M.连接DM,BM.则CM=1,
∵CD=,CM=1,CA=2,
∴CD2=CM CA,
∴=,
∵∠DCM=∠ACD,
∴△DCM∽△ACD,
∴==,
∴DM=AD,
∴BD+AD=BD+DM,
∴当B,D,M共线时,BD+AD的值最小,
最小值.
12.如图,点A、B在上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB上,且OD=4,动点P在上.求2PC+PD的最小值.
【答案】
【详解】如图,连接OP,在射线OA上截取AE=6,连接PE.
∵C是OA的中点,
∴.
∴在△OPC和△OEP中,,
∴,
∴,即,
∴,.
∴当P、D、E三点共线时,最小,最小值即为DE的长,如图,
在中, ,
∴ 的最小值为.
13.【模型由来】“阿氏圆”又称“阿波罗尼斯圆”,已知平面上两点A、B,则所有满足(且)的点的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.
【模型建立】如图1所示,圆O的半径为r,点A、B都在圆O外,P为圆O上一动点,已知,连接PA、PB,则当“”的值最小时,P点的位置如何确定?

第1步:一般将含有k的线段PB两端点分别与圆心O相连,即连接OB、OP;
第2步:在OB上取点C,使得,即,构造母子型相似∽(图2);
第3步:连接AC,与圆O的交点即为点P(图3).
【问题解决】如图,与y轴、x轴的正半轴分别相交于点M、点N,半径为3,点,点,点P在弧MN上移动,连接PA,PB.

(1)的最小值是多少?
(2)请求出(1)条件下,点P的坐标.
【答案】(1)
(2)
【详解】(1)解:如图,在x轴上取点,连接,

∵点,点,
∴,
∵,

∴,
∴,
∴,
∴,
当点P在上时,取得最小值,
∴,
故最小值为;
(2)∵,,
∴设直线的解析式为,将点代入得:
,解得,
∴,
设,
∵半径为3,
∴,
解得:(负值舍去),
∴,
∴ .
14.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B
(1)求抛物线解析式及B点坐标;
(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;
(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由.
【答案】(1)y=x2﹣6x+5, B(5,0);(2)当M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18;(3)PC+PA的最小值为,理由详见解析.
【详解】解:(1)直线y=﹣5x+5,x=0时,y=5
∴C(0,5)
y=﹣5x+5=0时,解得:x=1
∴A(1,0)
∵抛物线y=x2+bx+c经过A,C两点
∴ 解得:
∴抛物线解析式为y=x2﹣6x+5
当y=x2﹣6x+5=0时,解得:x1=1,x2=5
∴B(5,0)
(2)如图1,过点M作MH⊥x轴于点H
∵A(1,0),B(5,0),C(0,5)
∴AB=5﹣1=4,OC=5
∴S△ABC=AB OC=×4×5=10
∵点M为x轴下方抛物线上的点
∴设M(m,m2﹣6m+5)(1<m<5)
∴MH=|m2﹣6m+5|=﹣m2+6m﹣5
∴S△ABM=AB MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8
∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18
∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18
(3)如图2,在x轴上取点D(4,0),连接PD、CD
∴BD=5﹣4=1
∵AB=4,BP=2

∵∠PBD=∠ABP
∴△PBD∽△ABP

∴PD=AP
∴PC+PA=PC+PD
∴当点C、P、D在同一直线上时,PC+PA=PC+PD=CD最小
∵CD=
∴PC+PA的最小值为
15.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.
(1)求抛物线的解析式;
(2)设点的横坐标为,当时,求的值;
(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.
【答案】(1)yx2x﹣3;(2);(3).
【详解】(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x),把C(0,﹣3)代入得到a,∴抛物线的解析式为yx2x﹣3.
(2)在Rt△AOC中,tan∠OAC,∴∠OAC=60°.
∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA tan30°=1,∴D(0,﹣1),∴直线AD的解析式为yx﹣1,由题意P(m,m2m﹣3),H(m,m﹣1),F(m,0).
∵FH=PH,∴1m﹣1﹣(m2m﹣3)
解得m或(舍弃),∴当FH=HP时,m的值为.
(3)如图,∵PF是对称轴,∴F(,0),H(,﹣2).
∵AH⊥AE,∴∠EAO=60°,∴EOOA=3,∴E(0,3).
∵C(0,﹣3),∴HC2,AH=2FH=4,∴QHCH=1,在HA上取一点K,使得HK,此时K().
∵HQ2=1,HK HA=1,∴HQ2=HK HA,∴.
∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQAQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.
16.
【问题呈现】如图1,∠AOB=90°, OA=4,OB=5,点P在半径为2的⊙O上,求的最小值.
【问题解决】小明是这样做的:如图2,在OA上取一点C使得OC=1,这样可得,又因为∠COP=∠POA,所以可得△COP ∽△POA,所以,得所以.
又因为,所以最小值为 .
【思路点拨】小明通过构造相似形(图3),将转化成CP,再利用“两点之间线段”最短”求出CP+ BP的最小值.
【尝试应用】如图4,∠AOB=60°, OA=10,OB=9,点P是半径为6的⊙O上一动点,求的最小值.
【能力提升】如图5,∠ABC=120°, BA= BC=8,点D为平面内一点且BD= 3CD,连接AD,则△ABD面积的最大值为 .
【答案】[问题解决];[尝试应用],见详解;[能力提升]
【详解】解:[问题解决]如图,在中,,
的最小值为,
故答案为:;
[尝试应用]如图,在OB上取一点C,使OC=6,连续PO,PC,AC
,,


,,

过点C作于D,
sin,
,,
在中,,
最小值为;
[能力提升]在BC上取一点E,使BE=6,延长BC到F,使BF=12,则,
,,


连接DE,DF,
由,
点E,F到BD,CD的距离相等,,
DE,DF是的内,外角平分线,

点D是平面内任意一点,
点D在以EF为直径的圆O上,
过点O作交AB的延长线于点G,交圆O于点D,则DG是直线AB到圆上的最大距离,此时的面积最大,
,EO=3,
在中,,



△ABD面积的最大值为,
故答案为:
三、典例
17.如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:



的最小值.
【答案】;;;.
【详解】解:如图,在CB上取点D,使,连接CP、DP、AD.
∵,,,
∴.
又∵,
∴,
∴,即,
∴,
∴当A、P、D三点共线时,最小,最小值即为长.
∵在中,.
∴的最小值为;
∵,
∴的最小值为;
如图,在CA上取点E,使,连接CP、EP、BE.
∵,,,
∴.
又∵,
∴,
∴,即,
∴,
∴当B、P、E三点共线时,最小,最小值即为长.
∵在中,.
∴的最小值为;
∵,
∴的最小值为.
试卷第2页,共3页
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题06最值必会模型之阿氏圆精讲练
学校:___________姓名:___________班级:___________考号:___________
考 点 精 讲
“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。
1.当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理;
2.当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。
此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。即点P在直线上运动和点P在圆上运动。
点P在圆周上运动的类型称之为“阿氏圆”问题。
模型建立:
PA+kPB的最小值。
阿氏圆钥匙:
构造母子三角形相似
阿氏圆口诀:
两定一动阿氏圆,母子相似很简单。
第一步:确动点的运动轨迹(圆),
以点0为圆心、r为半径画圆;
(若圆已经画出则可省略这一步)
第二步:连接动点至圆心0
(将系数不为1的线段的固定端点
与圆心相连接),即连接OP,OB。
第三步:计算这两条线段长度的比k;
第四步:在0B上取点C,使得OC= k OP ; =k, ∠O= ∠O,
可得△ POC ∽ △ BOP
可得: =k, PC=k PB
第五步:则PA+kPB ≥PA+PC ≥AC,即当A,P,C 三点共线时可得最小值。
[提升:若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到 括号外边,将其中一条线段的系数化成,再构造△相似进行计算.]
如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是  .
思路引领:在AB上取一点T,使得AT=1,连接PT,PA,CT.证明△PAT∽△BAP,推出,推出PTPB,推出PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.
答案详解:在AB上取一点T,使得AT=1,连接PT,PA,CT.
∵PA=2.AT=1,AB=4,
∴PA2=AT AB,
∴,
∵∠PAT=∠PAB,
∴△PAT∽△BAP,
∴,
∴PTPB,
∴PB+CP=CP+PT,
∵PC+PT≥TC,
在Rt△ACT中,∵∠CAT=90°,AT=1,AC=4,
∴CT,
∴PB+PC,
∴PB+PC的最小值为.
故答案为.
实战训练
一、填空题
1.如图,正方形的边长为4,的半径为2,为上的动点,则的最大值是 .
2.如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则PA+PB的最小值为 .
3.如图,在 中,,,,D、E分别是边、上的两个动点,且,P是的中点,连接,,则的最小值为 .
4.如图,与轴、轴的正半轴分别相交于点、点,半径为3,点,点,点在弧上移动,连接,,则的最小值为 .
5.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为 .
6.如图,在中,,,,以点为圆心,6为半径的圆上有一个动点.连接、、,则的最小值是 .
7.如图所示的平面直角坐标系中,,,是第一象限内一动点,,连接、,则的最小值是 .
8.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是 .

二、解答题
9.问题提出:如图,在中,,,,的半径为,为圆上一动点,连接,求的最小值.
(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图,连接,在上取一点,使,则.又,所以.所以.所以,所以.请你完成余下的思考,并直接写出答案:的最小值为 ;
(2)自主探索:在“问题提出”的条件不变的前提下,求的最小值;
(3)拓展延伸:如图,已知在扇形COD中,,,,,是上一点,求的最小值.
10.如图1,抛物线与轴交于两点,与轴交于点,其中点的坐标为,抛物线的对称轴是直线.
(1)求抛物线的解析式;
(2)若点是直线下方的抛物线上一个动点,是否存在点使四边形的面积为16,若存在,求出点的坐标若不存在,请说明理由;
(3)如图2,过点作交抛物线的对称轴于点,以点为圆心,2为半径作,点为上的一个动点,求的最小值.
11.如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD
(1)求证:△BDC≌△AFC
(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;
(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.
12.如图,点A、B在上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB上,且OD=4,动点P在上.求2PC+PD的最小值.
13.【模型由来】“阿氏圆”又称“阿波罗尼斯圆”,已知平面上两点A、B,则所有满足(且)的点的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.
【模型建立】如图1所示,圆O的半径为r,点A、B都在圆O外,P为圆O上一动点,已知,连接PA、PB,则当“”的值最小时,P点的位置如何确定?

第1步:一般将含有k的线段PB两端点分别与圆心O相连,即连接OB、OP;
第2步:在OB上取点C,使得,即,构造母子型相似∽(图2);
第3步:连接AC,与圆O的交点即为点P(图3).
【问题解决】如图,与y轴、x轴的正半轴分别相交于点M、点N,半径为3,点,点,点P在弧MN上移动,连接PA,PB.

(1)的最小值是多少?
(2)请求出(1)条件下,点P的坐标.
14.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B
(1)求抛物线解析式及B点坐标;
(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;
(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由.
15.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.
(1)求抛物线的解析式;
(2)设点的横坐标为,当时,求的值;
(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.
16.
【问题呈现】如图1,∠AOB=90°, OA=4,OB=5,点P在半径为2的⊙O上,求的最小值.
【问题解决】小明是这样做的:如图2,在OA上取一点C使得OC=1,这样可得,又因为∠COP=∠POA,所以可得△COP ∽△POA,所以,得所以.
又因为,所以最小值为 .
【思路点拨】小明通过构造相似形(图3),将转化成CP,再利用“两点之间线段”最短”求出CP+ BP的最小值.
【尝试应用】如图4,∠AOB=60°, OA=10,OB=9,点P是半径为6的⊙O上一动点,求的最小值.
【能力提升】如图5,∠ABC=120°, BA= BC=8,点D为平面内一点且BD= 3CD,连接AD,则△ABD面积的最大值为 .
三、典例
17.如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:



的最小值.
试卷第2页,共3页
21世纪教育网(www.21cnjy.com)
同课章节目录