中小学教育资源及组卷应用平台
专题10点线式秒杀函数压轴题二:特殊三角形的存在性
(等腰、直角、等腰直角)
学校:___________姓名:___________班级:___________考号:___________
二次函数与特殊图形的存在性的融合,是中考数学的压轴大题的重要分支之一,图形的存在性,也有专门的套路,只要用好点线式,存在性问题即可秒解。
函数动点题的钥匙:点线式,三步曲。
点:(即所用到的点的坐标),
线:用点的坐标表示出:两点间距离,图像函数表达式,中点的坐标等。
式:分情况列出函数关系式或方程。
等腰三角形的存在性:
1.先确定三点坐标
2.求出三边长度。
3.两两相等得方程。
直角三角形的存在性:
1.先确定三点坐标
2.求出三边长度。
3.利用勾股,分情况列方程。
等腰直角三角形的存在性:
法一:选利用等腰三角形的存在性,确定为等腰三角形,再用勾股定理难是否为直角三角形。
法二:可以先画出确定直角,画出基础图形,再利用等腰三角形的存在性来证明是等腰三角形。
本专题需要用的黄金公式:距离三大公式。
黄金公式一:横向横差。(横向距离=横坐标的差)
黄金公式二:纵向纵差。(纵向距离=纵坐标的差)
黄金公式三:万能距离,勾股定理。
典 例 引 领
1.如图,二次函数的图象与轴相交于点和点,交轴于点.
(1)求此二次函数的解析式;
(2)二次函数图象的对称轴上是否存在点,使得是以为底边的等腰三角形?若存在,请求出满足条件的点的坐标;若不存在,请说明理由(请在图中探索).
【解析】(1)解:由题意得,
,
∴,
∴;
(2)解:设,,
∵,
∴,
由得,
∴,
∴.
2.如图,在平面直角坐标系中,抛物线与x轴交于,两点.与y轴交于点.
(1)求该抛物线的函数表达式;
(2)在抛物线的对称轴上是否存在一点M,使得是以为一条直角边的直角三角形:若存在,请求出点M的坐标,若不存在,请说明理由.
【解析】(1)解:由题意得
,
解得:,
抛物线的解析式为.
(2)解:存在,
如图,过作交抛物线的对称轴于,过作交抛物线的对称轴于,连接,
∵抛物线的对称轴为直线,
设,
,
,
,
,
,
解得:,
;
设直线的解析式为,则有
,
解得,
直线解析式为,
,且经过,
直线解析式为,
当时,,
;
综上所述:存在,的坐标为或.
2.如图,抛物线与轴交于两点(点在点的左侧),点的坐标为,与轴交于点,直线与轴交于点.动点在抛物线上运动,过点作轴,垂足为点,交直线于点.
(1)求抛物线的表达式;
(2)点在运动过程中,能否使以为顶点的三角形是以为腰的等腰直角三角形?若存在,请直接写出点的坐标.
【解析】(1)解:∵抛物线过点和,
∴,
解得,
∴抛物线的表达式为;
(2)解:∵轴,
∴当是以为腰的等腰直角三角形时,则有,
∴M点纵坐标为,
∴,
解得或,
当时,则点M和点C重合,不能构成三角形,不符合题意,舍去,
当时,则点M和点C重合,不能构成三角形,不符合题意,舍去,
点的坐标为,点的坐标为,
此时,,,
,则不是以为腰的等腰直角三角形,
∴不存在这样的点,使以为顶点的三角形是以为腰的等腰直角三角形.
实战训练
一、经典压轴题型:等腰直角三角形的存在性。
1.如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,其中 ,连接,.点是线段上一动点(不与、两点重合),过点作x轴的垂线,与直线交于点,与抛物线交于点.
(1)求抛物线的表达式,及直线的表达式;
(2)过点作,垂足为,求周长的最大值;
(3)点在轴上,点在抛物线对称轴上,是否存在点、使得为等腰直角三角形,且,若存在,求出点、的坐标,若不存在,请说明理由.
2.如图,在矩形中,点是边上任意一点(点不与、重合),连接,作,交于点,若,.
(1)试证明:;
(2)当为多少时,最长,最长是多少?
(3)试探究,是否存在一点,使是等腰直角三角形?
3.如图,在平面直角坐标系中,直线与x轴,y轴分别交于点A,C,抛物线过点A和点C,与x轴交于点B.
(1)求这个二次函数的表达式;
(2)抛物线对称轴与直线交于点D,若P是直线上方抛物线上的一个动点(点P不与点A,C重合),求面积的最大值;
(3)点M是抛物线对称轴上的一动点,x轴上方的抛物线上是否存在点N,使得是以为直角边的等腰直角三角形;若存在,请直接写出点N坐标;若不存在,请说明理由.
4.如图,抛物线与轴交于点、,与轴交于点.
(1)求抛物线的表达式.
(2)已知点为轴上一点,点关于直线的对称点为.
当点刚好落在第二象限的抛物线上时,求出点的坐标.
点在抛物线上(点不与点、点重合),连接,,,是否存在点,使为等腰直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
5.如图,函数的图象过点和两点.
(1)求和的值;
(2)点是双曲线上介于点和点之间的一个动点,若,求点的坐标;
(3)过点作,交轴于点,交轴于点,第二象限内是否存在点,使得是以为腰的等腰直角三角形 若存在,请求出点的坐标;若不存在,请说明理由.
6.如图所示,抛物线与轴交于、两点,与轴交于点,且,.
(1)求抛物线的解析式;
(2)若连接、.动点从点出发,在线段上以每秒个单位长度向点做匀速运动;同时,动点从点出发,在线段上以每秒个单位长度向点做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为秒.在、运动的过程中,当为何值时,四边形的面积最小,最小值为多少?
(3)点是抛物线上位于轴上方的一点,点在轴上,是否存在以点为直角顶点的等腰直角三角形?若存在,求出点的坐标,若不存在,请说明理由.
7.如图,抛物线交轴于,两点,交轴于点,点是抛物线上位于直线上方的一个动点.
(1)求抛物线的解析式;
(2)连接,,若,求点的坐标;
(3)在(2)的条件下,将抛物线沿着射线平移个单位,平移后、的对应点分别为、,在轴上是否存在点,使得是等腰直角三角形?若存在,请求出的值;若不存在,请说明理由.
二、压轴必会:直角三角形的存在性。
8.如图,抛物线与轴交于两点,与轴交于点.抛物线的对称轴与经过点的直线交于点,与轴交于点.
(1)求直线及抛物线的表达式;
(2)在抛物线上是否存在点,使得是以为直角边的直角三角形 若存在,求出所有点的坐标;若不存在,请说明理由;
(3)以点为圆心,画半径为2的圆,点为上一个动点,请求出的最小值.
9.如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,与反比例函数在第四象限内的图象交于点.
(1)求反比例函数的表达式:
(2)当时,直接写出x的取值范围;
(3)在双曲线上是否存在点P,使是以点A为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
10.如图,在平面直角坐标系中,抛物线(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,-4),点C坐标为(2,0).
(1)求此抛物线的函数解析式.
(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
11.已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).
(1)求抛物线的表达式;
(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;
(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.
12.如图,抛物线与轴相交于A,B两点,与y轴相交于点C,对称轴为直线,顶点为D,点B的坐标为.
(1)填空:点A的坐标为_________,点D的坐标为_________,抛物线的解析式为_________;
(2)当二次函数的自变量:满足时,函数y的最小值为,求m的值;
(3)P是抛物线对称轴上一动点,是否存在点P,使是以AC为斜边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
13.如图,抛物线过点和.
(1)求抛物线的函数表达式;
(2)已知该抛物线与x轴交于点A,B(点A位于点B的左侧),与y轴交于点C.
若点P是该抛物线位于第一象限部分上的一动点,过点P作x轴的垂线交于点Q,求的最大值及此时点P的坐标;
若点M是抛物线对称轴上一动点,是否存在以点B,C,M为顶点的三角形是直角三角形?若存在,请在备用图上画出符合条件的图形,并求出点M的坐标;若不存在,请说明理由.
14.如图,二次函数的图象与轴交于和两点,与轴交于点,点是直线下方的抛物线上一动点,过点作轴于点,交直线于点.
(1)求点和点的坐标;
(2)求线段的最大值及此时点的坐标;
(3)当最大时,在二次函数的图象上是否存在点,使以点为顶点的三角形是直角三角形?若存在,求点的坐标,若不存在,请说明理由.
三、压轴必会:等腰三角形的存在性。
15.如图,在平面直角坐标系中,的顶点B,C在x轴上,D在y轴上,,的长是方程的两个根().请解答下列问题:
(1)求点B的坐标;
(2)若,直线分别交x轴、y轴、于点E,F,M,且M是的中点,直线交延长线于点N,求的值;
(3)在(2)的条件下,点P在y轴上,在直线EF上是否存在点Q,使是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q的坐标;若不存在,请说明理由.
16.如图1,平面直角坐标系中,抛物线过点,和,连接,点 为抛物线上一动点,过点作轴交直线于点,交轴于点.
(1)直接写出抛物线和直线的解析式;
(2)如图2,连接,当为等腰三角形时,求的值;
(3)当点在运动过程中,在轴上是否存在点,使得以,,为顶点的三角形与以,,为顶点的三角形相似(其中点与点相对应),若存在,直接写出点和点的坐标;若不存在,请说明理由.
17.如图,在平面直角坐标系中,已知抛物线经过点,与y轴交于点,直线与抛物线交于B,C两点.
(1)求抛物线的函数表达式;
(2)若是以为腰的等腰三角形,求点B的坐标;
(3)过点作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得始终成立?若存在,求出m的值;若不存在,请说明理由.
18.定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).
(1)求抛物线C2的解析式和点G的坐标.
(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN与线段DM的长度的比值.
(3)如图,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.
19.在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).
(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;
(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;
(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
20.已知抛物线经过A(-1,0)、B(0、3)、 C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM ,交BC于点F
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF :
(3)是否存在点M使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长
21.如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,M为BC的中点,OA、OB的长分别是一元二次方程的两个根,,动点P从点D出发以每秒1个单位长度的速度沿折线向点B运动,到达B点停止.设运动时间为t秒,的面积为S.
(1)求点C的坐标;
(2)求S关于t的函数关系式,并写出自变量t的取值范围;
(3)在点P的运动过程中,是否存在点P,使是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
22.如图,开口向上的抛物线与x轴交于A(,0)、B(,0)两点,与y轴交于点C,且AC⊥BC,其中,是方程x2+3x﹣4=0的两个根.
(1)求点C的坐标,并求出抛物线的表达式;
(2)垂直于线段BC的直线l交x轴于点D,交线段BC于点E,连接CD,求△CDE的面积的最大值及此时点D的坐标;
(3)在(2)的结论下,抛物线的对称轴上是否存在点P,使得△PDE是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
试卷第2页,共3页
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题10点线式秒杀函数压轴题二:特殊三角形的存在性
(等腰、直角、等腰直角)
学校:___________姓名:___________班级:___________考号:___________
二次函数与特殊图形的存在性的融合,是中考数学的压轴大题的重要分支之一,图形的存在性,也有专门的套路,只要用好点线式,存在性问题即可秒解。
函数动点题的钥匙:点线式,三步曲。
点:(即所用到的点的坐标),
线:用点的坐标表示出:两点间距离,图像函数表达式,中点的坐标等。
式:分情况列出函数关系式或方程。
等腰三角形的存在性:
1.先确定三点坐标
2.求出三边长度。
3.两两相等得方程。
直角三角形的存在性:
1.先确定三点坐标
2.求出三边长度。
3.利用勾股,分情况列方程。
等腰直角三角形的存在性:
法一:选利用等腰三角形的存在性,确定为等腰三角形,再用勾股定理难是否为直角三角形。
法二:可以先画出确定直角,画出基础图形,再利用等腰三角形的存在性来证明是等腰三角形。
本专题需要用的黄金公式:距离三大公式。
黄金公式一:横向横差。(横向距离=横坐标的差)
黄金公式二:纵向纵差。(纵向距离=纵坐标的差)
黄金公式三:万能距离,勾股定理。
典 例 引 领
1.如图,二次函数的图象与轴相交于点和点,交轴于点.
(1)求此二次函数的解析式;
(2)二次函数图象的对称轴上是否存在点,使得是以为底边的等腰三角形?若存在,请求出满足条件的点的坐标;若不存在,请说明理由(请在图中探索).
【解析】(1)解:由题意得,
,
∴,
∴;
(2)解:设,,
∵,
∴,
由得,
∴,
∴.
2.如图,在平面直角坐标系中,抛物线与x轴交于,两点.与y轴交于点.
(1)求该抛物线的函数表达式;
(2)在抛物线的对称轴上是否存在一点M,使得是以为一条直角边的直角三角形:若存在,请求出点M的坐标,若不存在,请说明理由.
【解析】(1)解:由题意得
,
解得:,
抛物线的解析式为.
(2)解:存在,
如图,过作交抛物线的对称轴于,过作交抛物线的对称轴于,连接,
∵抛物线的对称轴为直线,
设,
,
,
,
,
,
解得:,
;
设直线的解析式为,则有
,
解得,
直线解析式为,
,且经过,
直线解析式为,
当时,,
;
综上所述:存在,的坐标为或.
2.如图,抛物线与轴交于两点(点在点的左侧),点的坐标为,与轴交于点,直线与轴交于点.动点在抛物线上运动,过点作轴,垂足为点,交直线于点.
(1)求抛物线的表达式;
(2)点在运动过程中,能否使以为顶点的三角形是以为腰的等腰直角三角形?若存在,请直接写出点的坐标.
【解析】(1)解:∵抛物线过点和,
∴,
解得,
∴抛物线的表达式为;
(2)解:∵轴,
∴当是以为腰的等腰直角三角形时,则有,
∴M点纵坐标为,
∴,
解得或,
当时,则点M和点C重合,不能构成三角形,不符合题意,舍去,
当时,则点M和点C重合,不能构成三角形,不符合题意,舍去,
点的坐标为,点的坐标为,
此时,,,
,则不是以为腰的等腰直角三角形,
∴不存在这样的点,使以为顶点的三角形是以为腰的等腰直角三角形.
实战训练
一、经典压轴题型:等腰直角三角形的存在性。
1.如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,其中 ,连接,.点是线段上一动点(不与、两点重合),过点作x轴的垂线,与直线交于点,与抛物线交于点.
(1)求抛物线的表达式,及直线的表达式;
(2)过点作,垂足为,求周长的最大值;
(3)点在轴上,点在抛物线对称轴上,是否存在点、使得为等腰直角三角形,且,若存在,求出点、的坐标,若不存在,请说明理由.
【答案】(1)抛物线表达式: ,直线的表达式: ;
(2)周长最大值为;
(3)存在,,或,.
【详解】(1)解:把代入,得:
,解得:,
∴;
设直线的解析式为:,把:,代入得:,
∴;
(2)∵,
∴,
∴,
∴,,
∵轴,,
∴,
又∵,
∴,
∴,,
∴的周长,
∴当最大时,的周长最大,
设,则:,
∴,
∴当时,有最大值为4,
此时:的周长最大为;
(3)存在;
∵,
∴对称轴为:,当时,,解得:,
∴,
∴,
设,,
当点在轴上方时,如图:
过点作轴,交对称轴于,过点作,则:,,
∵为等腰直角三角形,,
∴,,
∴,
∴,
∴,
∴,
∴,;
当点在轴下方时,
同法可得:,;
综上:,或,
2.如图,在矩形中,点是边上任意一点(点不与、重合),连接,作,交于点,若,.
(1)试证明:;
(2)当为多少时,最长,最长是多少?
(3)试探究,是否存在一点,使是等腰直角三角形?
【答案】(1)见解析
(2)为4时,最长,最长是
(3)存在,时,是等腰直角三角形
【详解】(1)
解:四边形是矩形,
,
,
而,
,
;
(2)
解:设,
,
,即,
则,
故当时,的最大值为,
即为4时,最长,最长是;
(3)
解:是等腰直角三角形,则,
而,
,
,
则,
即时,是等腰直角三角形.
3.如图,在平面直角坐标系中,直线与x轴,y轴分别交于点A,C,抛物线过点A和点C,与x轴交于点B.
(1)求这个二次函数的表达式;
(2)抛物线对称轴与直线交于点D,若P是直线上方抛物线上的一个动点(点P不与点A,C重合),求面积的最大值;
(3)点M是抛物线对称轴上的一动点,x轴上方的抛物线上是否存在点N,使得是以为直角边的等腰直角三角形;若存在,请直接写出点N坐标;若不存在,请说明理由.
【答案】(1)
(2)面积的最大值是
(3)点N坐标为或或或.
【详解】(1)
解:对于直线,令,则;令,则;∴,,把,代入得:
,
解得,
;
(2)
解:过作轴交于,如图:
在中,对称轴为直线,
当时,,
,
设,则,
,
∴
,
,
当时,取最大值为5;
∴面积的最大值为5;
(3)解:∵,对称轴为直线,
设,
当,,过点N作轴的平行线交对称轴于点,过点A作轴的平行线交于点,如图,
∴,
∴,
∴,,
∴,
整理得,
解得,
∴点N坐标为或;
当,,过点N作轴的垂线交轴于点,对称轴直线交轴于点,如图,
同理,则,即,
整理得,
解得,
∴点N坐标为或;
综上,点N坐标为或或或.
本题考查二次函数综合应用,涉及待定系数法,三角形面积,等腰直角三角形性质及应用等,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.
4.如图,抛物线与轴交于点、,与轴交于点.
(1)求抛物线的表达式.
(2)已知点为轴上一点,点关于直线的对称点为.
当点刚好落在第二象限的抛物线上时,求出点的坐标.
点在抛物线上(点不与点、点重合),连接,,,是否存在点,使为等腰直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
【答案】(1)函数表达式为:
(2)点存在点,使为等腰直角三角形,点的坐标为或或.
【详解】(1)解:由已知得:
抛物线与轴交于点、,
,
,
函数表达式为:.
(2)如图,点,关于直线对称,连结,.
当时,,
,
,
,
是等腰直角三角形,,
又点关于直线的对称点为,
由对称性可知:,
轴,
,关于抛物线对称轴对称,
对称轴为直线,
点.
,即,
点.
以为直角顶点,若点在点下方,如图,过点作轴,
,,
,
,
,
轴,
,
,
,,
,
,
设,
点,
,
,(舍去),
;
若点在点上方,如图,
,,
,,
,
点纵坐标为,
,
(舍去),,
;
如图,若以点为直角顶点,此时点与点重合,不合题意,
如图,若以点为直角顶点,此时点与点重合,不合题意,
如图,以为直角顶点,此时轴,过点作轴,交于,
,
,
设,
点的纵坐标为,
,
,
,(舍去),
;
综上,点的坐标为或或.
5.如图,函数的图象过点和两点.
(1)求和的值;
(2)点是双曲线上介于点和点之间的一个动点,若,求点的坐标;
(3)过点作,交轴于点,交轴于点,第二象限内是否存在点,使得是以为腰的等腰直角三角形 若存在,请求出点的坐标;若不存在,请说明理由.
【答案】(1)和的值分别为,;
(2),
(3)点或。
【详解】(1)解:函数的图像过点和两点,
,
解得,
故和的值分别为,;
(2)解:,
,
设直线的解析式为:,
把代入,得,解得 ,
∴直线的解析式为:,
过点作轴于点,交直线于点,
设,
,
,
,
或(不符合题意舍去)
,
(3)解:,直线的解析式为:,
设直线的解析式为:,
点在直线上,,
,即,
直线的解析式为:;
当时,,
∴,
当时,,
∴,
根据题意,分两种情况进行讨论:
以为直角边,为直角顶点;
如图,过做轴于点,可知:,
,
,
又,
,又,
,
,
故点到点的平移规律是:向左移个单位,向上移个单位得点坐标,
,且在第二象限,
即;
以为直角边,为直角顶点;同理得,将点向左移个单位,向上移个单位得点坐标,得.
综上所述:点或
6.如图所示,抛物线与轴交于、两点,与轴交于点,且,.
(1)求抛物线的解析式;
(2)若连接、.动点从点出发,在线段上以每秒个单位长度向点做匀速运动;同时,动点从点出发,在线段上以每秒个单位长度向点做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为秒.在、运动的过程中,当为何值时,四边形的面积最小,最小值为多少?
(3)点是抛物线上位于轴上方的一点,点在轴上,是否存在以点为直角顶点的等腰直角三角形?若存在,求出点的坐标,若不存在,请说明理由.
【答案】(1)
(2)时,四边形的面积最小,最小值为
(3)存在,或
【详解】(1)解:∵,,则,,
∴抛物线解析式为 ;
(2)
是等腰直角三角形,由点的运动可知:
,过点作轴,垂足为,
,
又 ,则,
当其中一点到达终点时,另一点随之停止运动,
,,
,
当时,四边形的面积最小,即为;
(3)解:存在,或
当点在的右侧时,如图所示,
过点作轴的平行线,交轴于点,过点作,
∵是以为直角为直角顶点的等腰直角三角形,
∴,
∴,
又
∴
∴,
设,
∴,
解得:或(舍去)
∴;
当点在的右侧时,同理可得
解得:或(舍去)
∴.
综上所述,或.
7.如图,抛物线交轴于,两点,交轴于点,点是抛物线上位于直线上方的一个动点.
(1)求抛物线的解析式;
(2)连接,,若,求点的坐标;
(3)在(2)的条件下,将抛物线沿着射线平移个单位,平移后、的对应点分别为、,在轴上是否存在点,使得是等腰直角三角形?若存在,请求出的值;若不存在,请说明理由.
【答案】(1)
(2)
(3)存在,或或时,是等腰直角三角形
【详解】(1)解:∵抛物线交轴于,两点,
∴抛物线的解析式为:;
(2)解:∵,
∴,
设点D的坐标为,
过点D作轴于点E,如图所示,
,
则,,
∴,
解得,
∴;
(3)解:设直线的解析式为:,
把点A、D的坐标代入得,
解得,
∴直线的解析式为:,
∵,
∴,
如图,若,则,
,
此时,
∴,
即;
如图,若,则,
,
此时,
∴,
∴,
即;
如图,若,则,过点P作于点Q,则,
,
此时,
∴,
∴,
即,
综上所述,或或时,是等腰直角三角形.
二、压轴必会:直角三角形的存在性。
8.如图,抛物线与轴交于两点,与轴交于点.抛物线的对称轴与经过点的直线交于点,与轴交于点.
(1)求直线及抛物线的表达式;
(2)在抛物线上是否存在点,使得是以为直角边的直角三角形 若存在,求出所有点的坐标;若不存在,请说明理由;
(3)以点为圆心,画半径为2的圆,点为上一个动点,请求出的最小值.
【答案】(1)直线的解析式为;抛物线解析式为
(2)存在,点M的坐标为或 或
(3)
【详解】(1)解:∵抛物线的对称轴,,
∴,
将代入直线,得,
解得,
∴直线的解析式为;
将代入,得
,解得,
∴抛物线的解析式为;
(2)存在点,
∵直线的解析式为,抛物线对称轴与轴交于点.
∴当时,,
∴,
当时,
设直线的解析式为,将点A坐标代入,
得,
解得,
∴直线的解析式为,
解方程组,
得或,
∴点M的坐标为;
当时,
设直线的解析式为,将代入,
得,
解得,
∴直线的解析式为,
解方程组,
解得或,
∴点M的坐标为 或
综上,点M的坐标为或 或;
(3)如图,在上取点,使,连接,
∵,
∴,
∵,、
∴,
又∵,
∴,
∴,即,
∴,
∴当点C、P、F三点共线时,的值最小,即为线段的长,
∵,
∴,
∴的最小值为.
9.如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,与反比例函数在第四象限内的图象交于点.
(1)求反比例函数的表达式:
(2)当时,直接写出x的取值范围;
(3)在双曲线上是否存在点P,使是以点A为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)
(2)或
(3)或
【详解】(1)解:把,代入中得:,
∴,
∴直线的解析式为,
在中,当时,,
∴,
把代入中得:,
∴,
∴反比例函数的表达式;
(2)解:联立,解得或,
∴一次函数与反比例函数的两个交点坐标分别为,
∴由函数图象可知,当或时,一次函数图象在反比例函数图象上方,
∴当时,或;
(3)解:如图所示,设直线交y轴于点,
∵,,
∴,,,
∵是以点A为直角顶点的直角三角形,
∴,
∴,
∴,
解得,
∴,
同理可得直线的解析式为,
联立,解得或,
∴点P的坐标为或.
10.如图,在平面直角坐标系中,抛物线(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,-4),点C坐标为(2,0).
(1)求此抛物线的函数解析式.
(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
【答案】(1)
(2)(-2,-4)
(3)P点坐标为:(-1,3),(-1,-5),,
【详解】(1)解:将B(0,-4),C(2,0)代入,
得:,
解得:,
∴抛物线的函数解析式为:.
(2)向下平移直线AB,使平移后的直线与抛物线只有唯一公共点D时,此时点D到直线AB的距离最大,此时△ABD的面积最大,
∵时,,,
∴A点坐标为:(-4,0),
设直线AB关系式为:,
将A(-4,0),B(0,-4),代入,
得:,
解得:,
∴直线AB关系式为:,
设直线AB平移后的关系式为:,
则方程有两个相等的实数根,
即有两个相等的实数根,
∴,
即的解为:x=-2,
将x=-2代入抛物线解析式得,,
∴点D的坐标为:(-2,-4)时,△ABD的面积最大;
(3)当∠PAB=90°时,
即PA⊥AB,则设PA所在直线解析式为:,
将A(-4,0)代入得,,
解得:,
∴PA所在直线解析式为:,
∵抛物线对称轴为:x=-1,
∴当x=-1时,,
∴P点坐标为:(-1,3);
当∠PBA=90°时,
即PB⊥AB,则设PB所在直线解析式为:,
将B(0,-4)代入得,,
∴PA所在直线解析式为:,
∴当x=-1时,,
∴P点坐标为:(-1,-5);
当∠APB=90°时,设P点坐标为:,
∴PA所在直线斜率为:,PB在直线斜率为:,
∵PA⊥PB,
∴ =-1,
解得:,,
∴P点坐标为:,
综上所述,P点坐标为:(-1,3),(-1,-5),,时,△PAB为直角三角形.
11.已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).
(1)求抛物线的表达式;
(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;
(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.
【答案】(1);(2),;(3)或或或
【详解】解:(1)将点、、代入,
得,
解得,
;
(2)如图1,过点作轴交直线于点,过作轴交直线于点,
,
,
设直线的解析式为,
,
,
,
设,则,
,
,
,
,
,
当时,有最大值,
;
(3),点在上,
如图2,当时,
过点作轴,过点作轴,与交于点,过点作轴,与交于点,
,,
,
,
,即,
,
;
如图3,当时,
过点作轴交于点,
,,
,
,
,即,
,
;
如图4,当时,
线段的中点,,
设,
,
,
或,
或;
综上所述:是直角三角形时,点坐标为或或或.
12.如图,抛物线与轴相交于A,B两点,与y轴相交于点C,对称轴为直线,顶点为D,点B的坐标为.
(1)填空:点A的坐标为_________,点D的坐标为_________,抛物线的解析式为_________;
(2)当二次函数的自变量:满足时,函数y的最小值为,求m的值;
(3)P是抛物线对称轴上一动点,是否存在点P,使是以AC为斜边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)(1,0),(2,-1),;(2)m的值为或;(3)点P的坐标为:(2,1),(2,2)
【详解】解:(1)∵抛物线的对称轴为x=2,点B坐标为(3,0),且点A在B点的左侧,
∴A(1,0)
又x=
∴
把A(1,0)代入得,
∴抛物线的解析式为
∴顶点D坐标为(2,-1)
故答案为:(1,0),(2,-1),;
(2)∵抛物线开口向上,当时,y随x的增大而减小;当时,y随x的增大而增大,
当,即时,
解得,(舍去)或
当时,
解得,或(舍去)
所以,m的值为或
(3)假设存在,设P(2,t)
当时,如图,
过点C作CG⊥PE于点G,则CG=2,PG=3-t
,
∴ ,即
整理得,
解得,,
经检验:,是原方程的根且符合题意,
∴点P的坐标为(2,1),(2,2)
综上,点P的坐标为:(2,1),(2,2)
13.如图,抛物线过点和.
(1)求抛物线的函数表达式;
(2)已知该抛物线与x轴交于点A,B(点A位于点B的左侧),与y轴交于点C.
若点P是该抛物线位于第一象限部分上的一动点,过点P作x轴的垂线交于点Q,求的最大值及此时点P的坐标;
若点M是抛物线对称轴上一动点,是否存在以点B,C,M为顶点的三角形是直角三角形?若存在,请在备用图上画出符合条件的图形,并求出点M的坐标;若不存在,请说明理由.
【答案】(1)
(2)最大值为,点P坐标为;
点M的坐标为或或或
【详解】(1)解:∵抛物线过点和,
,解得,
抛物线的函数表达式为.
(2)解:当时,,点C的坐标为;
当时,,解得或,
∵点A位于点B的左侧,点A的坐标为,点B的坐标为.
设点P的横坐标为,则点P的纵坐标为,
设直线的函数表达式为,
根据题意得,解得,
直线的函数表达式为,点Q的纵坐标为,,
,此抛物线的开口向下,
,当时,有最大值,此时点P的坐标为;
存在以点B,C,M为顶点的三角形是直角三角形.
抛物线的对称轴为直线,设点M的坐标为.
分两种情况:i)以为直角边,如图,则或,
或,解得或,
点的坐标为,点的坐标为;
ii)以为斜边,如图,则,,整理得,解得,点的坐标为,点的坐标为,
综上,点M的坐标为或或或.
14.如图,二次函数的图象与轴交于和两点,与轴交于点,点是直线下方的抛物线上一动点,过点作轴于点,交直线于点.
(1)求点和点的坐标;
(2)求线段的最大值及此时点的坐标;
(3)当最大时,在二次函数的图象上是否存在点,使以点为顶点的三角形是直角三角形?若存在,求点的坐标,若不存在,请说明理由.
【答案】(1)
(2)当时,线段的最大值为4,此时点的坐标为
(3)存在,或或
【详解】(1)
解:二次函数的图象与轴交于和两点,
当时,即,
解得:,
;
(2)
解:当时,,
,
设直线的解析式为,则,
解得:,
直线的表达式为,
设,则,
,
,
当时,线段的最大值为4,此时点的坐标为;
(3)解:存在.
设,
如图,当点为直角顶点时,即,
此时,点在第二象限,,
过点作轴于点,过点作轴于点,
,
,则,
,
,
,
又,
,
,即,
解得:(舍去)
;
如图,当点为直角顶点时,即,此时,点在第四象限,,
过点作轴于点,过点作轴于点,过点作垂足为点,
,
,
由图可知,
,
,
,
,
,
又,
,
即,
解得:(舍去)
;
如图当点为直角顶点时,即,过点作轴于点,过点作于点,
,由图可知,
,
,
,
,
,
又,
,
即,
解得:,
即点与点重合;
综上所述,点的坐标为或或.
三、压轴必会:等腰三角形的存在性。
15.如图,在平面直角坐标系中,的顶点B,C在x轴上,D在y轴上,,的长是方程的两个根().请解答下列问题:
(1)求点B的坐标;
(2)若,直线分别交x轴、y轴、于点E,F,M,且M是的中点,直线交延长线于点N,求的值;
(3)在(2)的条件下,点P在y轴上,在直线EF上是否存在点Q,使是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q的坐标;若不存在,请说明理由.
【答案】(1)
(2)
(3)存在,等腰三角形的个数是8个,,, ,
【详解】(1)解方程,得,.
,
,.
;
(2),
.
四边形是平行四边形,
,.
是中点,
.
.
将代入,得.
.
,.
.
过点C作于H,过点N作于K.
,.
∴
∵
∴
∴
∴
∴
∵
∴,,
∴在中,
在中,
∴
∴
(3)解:由(2)知:直线解析式为,,
设,,
当时,
,,
解得或,或,
∴,,,,
如图,、、、都是以5为腰的等腰三角形,
;
当时,
由知:,,
∵,
∴不可能等于5,
如图,,都是以5为腰的等腰三角形,
;
当时,
由知:,,
当时,,
解得(舍去),,
∴,
如图,
当时,,
解得(舍去),,
∴,
如图,
综上,等腰三角形的个数是8个,
符合题意的Q坐标为,, ,
16.如图1,平面直角坐标系中,抛物线过点,和,连接,点 为抛物线上一动点,过点作轴交直线于点,交轴于点.
(1)直接写出抛物线和直线的解析式;
(2)如图2,连接,当为等腰三角形时,求的值;
(3)当点在运动过程中,在轴上是否存在点,使得以,,为顶点的三角形与以,,为顶点的三角形相似(其中点与点相对应),若存在,直接写出点和点的坐标;若不存在,请说明理由.
【答案】(1)抛物线:;直线:
(2)或或
(3),或,或,
【详解】(1)解:抛物线过点,,
抛物线的表达式为,
将点代入上式,得,
.
抛物线的表达式为,即.
设直线的表达式为,
将点,代入上式,
得,
解得.
直线的表达式为.
(2)解:点在直线上,且,
点的坐标为.
,,.
当为等腰三角形时,
若,则,
即,
解得.
若,则,
即,
解得或(舍去).
若,则,
即,
解得(舍去)或.
综上,或或.
(3)解:点与点相对应,
或.
若点在点左侧,
则,,.
当,即时,
直线的表达式为,
,解得或(舍去).
,即.
,即,
解得.
,.
当,即时,
,,
,即,
解得(舍去)或(舍去).
若点在点右侧,
则,.
当,即时,
直线的表达式为,
,解得或(舍去),
,
,即,
解得.
,.
当,即时,
,.
,即,
解得或(舍去).
,.
综上,,或,或,.
17.如图,在平面直角坐标系中,已知抛物线经过点,与y轴交于点,直线与抛物线交于B,C两点.
(1)求抛物线的函数表达式;
(2)若是以为腰的等腰三角形,求点B的坐标;
(3)过点作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得始终成立?若存在,求出m的值;若不存在,请说明理由.
【答案】(1)
(2)点B的坐标为或或
(3)存在,m的值为2或
【详解】(1)解:∵抛物线经过点,与y轴交于点,
∴,解得,
∴抛物线的函数表达式为;
(2)解:设,
根据题意,是以为腰的等腰三角形,有两种情况:
当时,点B和点P关于y轴对称,
∵,∴;
当时,则,
∴,
整理,得,
解得,,
当时, ,则,
当时, ,则,
综上,满足题意的点B的坐标为或或;
(3)解:存在常数m,使得.
根据题意,画出图形如下图,
设抛物线与直线的交点坐标为,,
由得,
∴,;
设直线的表达式为,
则,解得,
∴直线的表达式为,
令,由得,
∴,
同理,可得直线的表达式为,则,
过E作轴于Q,过D作轴于N,
则,,,,
若,则,
∴,
∴,
∴,
∴,
则,
整理,得,
即,
将,代入,得,
即,则或,
解得,,
综上,存在常数m,使得,m的值为2或.
18.定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).
(1)求抛物线C2的解析式和点G的坐标.
(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN与线段DM的长度的比值.
(3)如图,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.
【答案】(1)y=x2+x﹣1,G(0,﹣3)
(2)
(3)存在,(﹣2,0)或(﹣﹣2,0)
【详解】(1)解:将A(﹣3,0)、H(0,﹣1)代入y=ax2+2ax+c中,
∴,
解得,
∴y=x2+x﹣1,
在y=x2+2x﹣3中,令x=0,则y=﹣3,
∴G(0,﹣3).
(2)设M(t,t2+2t﹣3),则D(t,),N(t,0),
∴NM=﹣t2﹣2t+3,,
∴=.
(3)存在点F,使得△EFG是以EG为腰的等腰三角形,理由如下:
由(1)可得y=x2+2x﹣3的对称轴为直线x=﹣1,
∵E点与H点关于对称轴x=﹣1对称,
∴E(﹣2,﹣1),
设F(x,0),
当EG=EF时,
∵G(0,﹣3),
∴EG=2,
∴2=,
解得x=﹣2或x=﹣﹣2,
∴F(﹣2,0)或(﹣﹣2,0);
当EG=FG时,2=,
此时x无解;
综上所述:F点坐标为(﹣2,0)或(﹣﹣2,0).
19.在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).
(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;
(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;
(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
【答案】(1),抛物线顶点
(2)时,△BFE与△DEC的面积之和最小
(3)
【详解】(1)解:∵y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3),
,
∴,
抛物线的解析式为;
由
抛物线顶点;
(2)如图1中,连接BC,过点C作CH⊥ BD于点H.设抛物线的对称轴交x轴于点T.
,
,
,
,
,
,
轴, 轴,
,
,
,
,
与 的面积之和
,
S有最小值,最小值为,此时,
时,△BFE与△DEC的面积之和有最小值.
(3)存在,如图2,
,,的对称轴为直线,
将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.
抛物线的对称轴为直线,
设 ,
当 时,
,
,
,
当 时,
,
解得, ,
,
当 时,
,
解得, ,
综上所述,满足条件的的坐标为 .
20.已知抛物线经过A(-1,0)、B(0、3)、 C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM ,交BC于点F
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF :
(3)是否存在点M使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长
【答案】(1)
(2)见解析
(3)存在,或
【详解】(1)设抛物线的表达式为,
将A(-1,0)、B(0、3)、C(3,0)代入,
得,解得,
抛物线的表达式为;
(2)四边形OBDC是正方形,
,
,
,
;
(3)存在,理由如下:
当点M在线段BD的延长线上时,此时,
,
设,
设直线OM的解析式为,
,
解得,
直线OM的解析式为,
设直线BC的解析式为,
把B(0、3)、 C(3,0)代入,得,
解得,
直线BC的解析式为,
令,解得,则,
,
四边形OBDC是正方形,
,
,
,
,
,
解得或或,
点M为射线BD上一动点,
,
,
,
当时,解得或,
,
.
当点M在线段BD上时,此时,,
,
,
,
由(2)得,
四边形OBDC是正方形,
,
,
,
,
,
,
,
,
;
综上,ME的长为或.
21.如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,M为BC的中点,OA、OB的长分别是一元二次方程的两个根,,动点P从点D出发以每秒1个单位长度的速度沿折线向点B运动,到达B点停止.设运动时间为t秒,的面积为S.
(1)求点C的坐标;
(2)求S关于t的函数关系式,并写出自变量t的取值范围;
(3)在点P的运动过程中,是否存在点P,使是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【答案】(1)点C坐标为
(2)
(3)存在点P或或,使是等腰三角形
【详解】(1)解:,解得,,
∵,
∴,,
∵,
∴,
∴,
∵四边形ABCD是平行四边形,
∴,,
∴点C坐标为;
(2)解:当时,,
当时,过点A作交CB的延长线于点F,如图,
,
∵四边形ABCD是平行四边形,
∴,
∵,
∴,
∴,
∴,
∴;
(3)解:存在点P,使是等腰三角形,理由如下:
根据题意得:当点P在CD上运动时,可能是等腰三角形,
∵四边形ABCD是平行四边形,
∴∠C=∠BAD,BC=AD=5,
∴,
∵点M为BC的中点,
∴,
当CP=PM时,过点M作MF⊥PC于点F,
∴,
设PC=PM=a,则PD=7-a,,
∵PF2+FM2=PM2,
∴,解得:,
∴,
∴此时点P;
当时,
∴,
∴此时点P;
当PM=CM时,过点M作MG⊥PC于点G,则,
∴,
∴PD=7-PC=4,
∴此时点P;
综上所述,存在点P或或,使是等腰三角形
22.如图,开口向上的抛物线与x轴交于A(,0)、B(,0)两点,与y轴交于点C,且AC⊥BC,其中,是方程x2+3x﹣4=0的两个根.
(1)求点C的坐标,并求出抛物线的表达式;
(2)垂直于线段BC的直线l交x轴于点D,交线段BC于点E,连接CD,求△CDE的面积的最大值及此时点D的坐标;
(3)在(2)的结论下,抛物线的对称轴上是否存在点P,使得△PDE是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)C(0,﹣2);yx2x﹣2;(2)S△CDE最大为,D(,0);(3)存在,P的坐标为(,)或(,)或(,﹣2)或(,).
【详解】解:(1)由x2+3x﹣4=0得=﹣4,=1,
∴A(﹣4,0),B(1,0),
∴OA=4,OB=1,
∵AC⊥BC,
∴∠ACO=90°﹣∠BCO=∠OBC,
∵∠AOC=∠BOC=90°,
∴△AOC∽△COB,
∴,即,
∴OC=2,
∴C(0,﹣2),
设抛物线解析式为y=a(x+4)(x﹣1),
将C(0,﹣2)代入得﹣2=﹣4a,
∴a,
∴抛物线解析式为y(x+4)(x﹣1)x2x﹣2;
(2)如图:
由A(﹣4,0),B(1,0),C(0,﹣2)得:AB=5,BC,AC=2,
∵DE⊥BC,AC⊥BC,
∴DE∥AC,
∴△ABC∽△DBE,
∴,
设D(t,0),则BD=1﹣t,
∴,
∴DE(1﹣t),BE(1﹣t),
∴S△BDEDE BE(1﹣t)2,
而S△BDCBD OC(1﹣t)×2=1﹣t,
∴S△CDE=S△BDC﹣S△BDE=1﹣t(1﹣t)2t2t(t)2,
∵0,
∴t时,S△CDE最大为,
此时D(,0);
(3)存在,由yx2x﹣2知抛物线对称轴为直线x,
而D(,0),
∴D在对称轴上,
由(2)得DE[1﹣()],
当DE=DP时,如图:
∴DP,
∴P(,)或(,),
当DE=PE时,过E作EH⊥x轴于H,如图:
∵∠HDE=∠EDB,∠DHE=∠BED=90°,
∴△DHE∽△DEB,
∴,即,
∴HE=1,DH=2,
∴E(,﹣1),
∵E在DP的垂直平分线上,
∴P(,﹣2),
当PD=PE时,如图:
设P(,m),则m2=()2+(m+1)2,
解得m,
∴P(,),
综上所述,P的坐标为(,)或(,)或(,﹣2)或(,).
试卷第2页,共3页
21世纪教育网(www.21cnjy.com)