“概率”单元测试题(供理科使用)
一、选择题:(每小题5分,计50分)
1.(2008福建文)某一批花生种子,如果每一粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是( )
A. B. C. D.
2.(2008辽宁文、理) 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )
A. B. C. D.
3. (2008山东理)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( )
(A) (B) (C) (D)
4. (2008重庆理)已知随机变量服从正态分布N(3,a2),则P (<3) =( )
(A) (B) (C) (D)
5.(2007重庆文、理)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( )
(A) (B) (C) (D)
6.(2006福建理)在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于( )
A. B. C. D.
7. (2006四川文、理)从到这个数字中任取个数字组成一个没有重复数字的三位数,这个数不能被整除的概率为( )
(A) (B) (C) (D)
8.( 2005年广东)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有1,2,3,4,5,6),
骰子朝上的面的点数分别为x,y,则使 的概率为( )
A. B. C. D.
9.(2004江苏)将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )
(A) (B) (C) (D)
10.(2004辽宁)已知随机变量的概率分布如下:
1 2 3 4 5 6 7 8 9 10
m
则( )
A. B. C. D.
二、填空题:(每小题5分,计20分)
11. (2008江苏)在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率_______ .
12.(2007上海文、理)在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).
13.(2007全国Ⅱ理)在某项测量中,测量结果服从正态分布N(1,2)()0),若在(0,1)内取值的概率为0.4,则在(0,2)内取值的概率为 。
14..(2006湖北文、理)接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 。(精确到0.01)
三、解答题:(15、16题各12分,其余题目各14分)
15. (2006陕西理) 甲、乙、丙3人投篮,投进的概率分别是, , .
(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;
(Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望Eξ.
16.(2008四川理) 设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
17. (2008广东理)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获利分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:万元)为.
(1)求ξ的分布列; (2)求1件产品的平均利润(即ξ的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%. 如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少
18.(2007山东理)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计). (Ⅰ)求方程有实根的概率; (Ⅱ)求的分布列和数学期望;
(Ⅲ)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
19. (2007天津理) 已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.
20.(2008山东理)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用ε表示甲队的总得分. (Ⅰ)求随机变量ε分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
“概率”单元测试题(供理科使用)(参考答案)
一、选择题:(每小题5分,计50分)
二、填空题:(每小题5分,计20分)
11. 12. 0.3 , 13. 0.8 14. 0.94
三、解答题:(15、16题各12分,其余题目各14分)
15.解: (Ⅰ)记"甲投篮1次投进"为事件A1 , "乙投篮1次投进"为事件A2 , "丙投篮1次投进"为事件A3, "3人都没有投进"为事件A . 则 P(A1)= , P(A2)= , P(A3)= ,
∴ P(A) = P()=P()·P()·P()
= [1-P(A1)] ·[1-P (A2)] ·[1-P (A3)]=(1-)(1-)(1-)=
∴3人都没有投进的概率为 .
(Ⅱ)解法一: 随机变量ξ的可能值有0,1,2,3), ξ~ B(3, ),
P(ξ=k)=C3k()k()3-k (k=0,1,2,3) , Eξ=np = 3× = .
解法二: ξ的概率分布为:
ξ 0 1 2 3
P
Eξ=0×+1×+2×+3×= 。
16.【解】:记表示事件:进入商场的1位顾客购买甲种商品,
记表示事件:进入商场的1位顾客购买乙种商品,
记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,
记表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种,
(Ⅰ)
(Ⅱ)
,
(Ⅲ),故的分布列
,
,
所以
17.解: (1) 依题意得, ξ的所有可能取值为6,2,1,-2.
ξ=6,2,1,-2分别对应抽取1件产品为一等品、二等品、三等品、次品这四个事件.
所以,
,
所以ξ的分布列为
(2) 1件产品的平均利润为Eξ=60.63+20.25+10.1-20.02=4.34
(3)设三等品率为x,则二等品率为0.29-x,此时ξ的分布列为
1件产品的平均利润为Eξ=60.7+2(0.29-x)+x-20.01=4.76-x
令Eξ=4.76-x4.73,解得=3%,
答:三等品率最多是3%.
18.【答案】:(I)基本事件总数为,
若使方程有实根,则,即。
当时,; 当时,; 当时,;
当时,; 当时,; 当时,,
目标事件个数为
因此方程 有实根的概率为
(II)由题意知,,则 ,,
故的分布列为
0 1 2
P
的数学期望
(III)记“先后两次出现的点数中有5”为事件M,“方程 有实根” 为事件N,
则, , .
19.(Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且,.
故取出的4个球均为黑球的概率为.
(Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.由于事件互斥,
且,.
故取出的4个球中恰有1个红球的概率为.
(Ⅲ)解:可能的取值为.由(Ⅰ),(Ⅱ)得,,
.从而.
的分布列为
0 1 2 3
的数学期望.
20.(Ⅰ)解法一:由题意知,ε的可能取值为0,1,2,3,且
所以ε的分布列为
ε 0 1 2 3
P
ε的数学期望为Eε=
解法二:根据题设可知
因此ε的分布列为
(Ⅱ)解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=C∪D,且C、D互斥,又
由互斥事件的概率公式得
解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“已队得k分”这一事件,k=0,1,2,3由于事件A3B0,A2B1为互斥事件,故P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).
w.w.w.k.s.5.u.c.o.m
www.