北大附中广州实验学校2008—2009高三第一轮复习
“概率”单元测试题(文科)
一、选择题:(每小题5分,计50分)
1.(2008辽宁文、理) 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )
A. B. C. D.
2.(2008惠州调研二理)方程有实根的概率为( ).
A、 B、 C、 D、
3.( 2005年广东)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有1,2,3,4,5,6),
骰子朝上的面的点数分别为x,y,则使 的概率为( )
A. B. C. D.
4.(2007韶关一模文)有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,
则他抽到中奖券的概率是( )
(A) (B) (C) (D)
5. (2007韶关二模文) 一个停车场有3个并排的车位,分别停放着“红旗”,“捷达”,“桑塔纳”轿车各一辆,则“捷达””车停在“桑塔纳”车的右边的概率和“红旗”车停在最左边的概率分别是( )
A. , . , . , . ,
6.(2008佛山一模理)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为( )
A. B. C. D.
7.(2008广州一模理)在区间上任取两个数,方程
的两根均为实数的概率为( )
A. B. C. D.
8. (2008深圳调研文)甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字),设甲、乙所抛掷骰子朝上的面的点数分别为、,则满足复数的实部大于虚部的概率是( )
A. B. C. D.
9.(2007湛江二模文)已知点满足≤8,则点在区域内的概率为( )
A. B. C. D.
10. (2008广州二模文、理)甲、乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各抛一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上12,这样就可得到一个新的实数. 对仍按上述方法进行一次操作,又得到一个新的实数. 当时, 甲获胜, 否则乙获胜. 若甲获胜的概率为, 则的取值范围是( )
A. B. C. D.
二、填空题:(每小题5分,计20分)
11.(2008东莞调研文)每次抛掷一枚骰子(六个面上分别标以1,2,3,4,5,6).连续抛掷2次,则2次向上的数之和不小于10的概率为 .
12. (2008梅州一模文)设则函数是增函数的概率为____ ___
13.(2008惠州调研三文、理,2007湛江一模文)下图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为 .
14. (2008江苏)在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均
不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,
向D 中随机投一点,则落入E 中的概率_________ .
三、解答题:(15、16题各12分,其余题目各14分)
15.(2008广州调研文)已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.
(1)求甲射击一次,命中不足8环的概率; (2)求甲射击一次,至少命中7环的概率.
16、(2008海南、宁夏文)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10。把这6名学生的得分看成一个总体。(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本。求该样本平均数与总体平均数之差的绝对值不超过0.5的概率。
17. (2008广东文)某初级中学共有学生2000名,各年级男、女生人数如下表. 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19 .
(1)求x的值;
(2)现用分层抽样的方法在全校抽取48名学生, 问应在初三年级抽取多少名?
(3)已知,求初三年级中女生比男生多的概率.
18.(2008山东文)现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求被选中的概率 (Ⅱ)求和不全被选中的概率.
19.(2008广州一模文)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为,第二次出现的点数为.
(1)求事件“”的概率;
(2)求事件“”的概率.
20.(2007海南、宁夏文)设有关于的一元二次方程.
(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数, 求上述方程有实根的概率.
北大附中广州实验学校2008—2009高三第一轮复习
“概率”单元测试题(文科)
一、选择题:(每小题5分,计50分)
二、填空题:(每小题5分,计20分)
11.. 12.. 13. . 14..
三、解答题:(15、16题各12分,其余题目各14分)
15.解:记“甲射击一次,命中7环以下”为事件,“甲射击一次,命中7环”为事件,由于在一次射击中,与不可能同时发生,故与是互斥事件,
(1)“甲射击一次,命中不足8环”的事件为,
由互斥事件的概率加法公式,.
答:甲射击一次,命中不足8环的概率是0.22.
(2) 记“甲射击一次,命中8环”为事件,“甲射击一次,命中9环(含9环)以上”为事件,则“甲射击一次,至少命中7环”的事件为,
∴.
答:甲射击一次,至少命中7环的概率为0.9.
16、解:(Ⅰ)总体平均数为.
(Ⅱ)设表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.
从总体中抽取2个个体全部可能的基本结果有:,,,,,,,,,,,,,,.共15个基本结果.
事件包括的基本结果有:,,,,,,.共有7个基本结果.所以所求的概率为.
17.解: (1)由,解得,
(2)初三年级人数为,
设应在初三年级抽取m人,则,解得m=12.
答: 应在初三年级抽取12名.
(3)设初三年级女生比男生多的事件为,初三年级女生和男生数记为数对,
由(2)知,则基本事件总数有:
共11个,
而事件包含的基本事件有:
共5个,
∴
18.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间{,,
,,,
,,,
}
由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.
用表示“恰被选中”这一事件,则{,
},事件由6个基本事件组成,
因而.
(Ⅱ)用表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于{},事件有3个基本事件组成,
所以,由对立事件的概率公式得.
19.解:设表示一个基本事件,则掷两次骰子包括:,,,,,,,,……,,,共36个基本事件.
(1)用表示事件“”,则的结果有,,,共3个基本事件.
∴.
答:事件“”的概率为.
(2)用表示事件“”,
则的结果有,,,,,,,,共8个基本事件. ∴.
答:事件“”的概率为.
20.解:设事件为“方程有实根”.
当,时,方程有实根的充要条件为.
(Ⅰ)基本事件共12个:
.其中第一个数表示的取值,第二个数表示的取值.
事件中包含9个基本事件,事件发生的概率为.
(Ⅱ)试验的全部结束所构成的区域为.
构成事件的区域为.
所以所求的概率为.
w.w.w.k.s.5.u.c.o.m
www.