中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 四边形
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 19.1.1《多边形内角和》(1) 19.1多边形内角和
2 19.1.1《多边形内角和》(2) 19.1多边形内角和
3 19.2.1《平行四边形的判定》 19.2平行四边形
4 19.2.2《平行四边形的性质》(1) 19.2平行四边形
5 19.2.2《平行四边形的性质》(2) 19.2平行四边形
6 19.3.1 矩形的性质和判定(第1课时) 19.3矩形 菱形 正方形
7 19.3.2 矩形的性质和判定(第2课时) 19.3矩形 菱形 正方形
8 19.3.3 菱形的性质和判定(第1课时) 19.3矩形 菱形 正方形
9 19.3.4 菱形的性质和判定(第2课时) 19.3矩形 菱形 正方形
10 19.3.5 正方形的性质和判定 19.3矩形 菱形 正方形
11 19.4 综合与实践 多边形的镶嵌 19.4 综合与实践 多边形的镶嵌
二、单元分析
(一)课标要求
1.理解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;了解四边形的不稳定性。
2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分。探索并证明平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
3.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
内容分析
本单元教材首先从多边形的概念着手, 研究多边形的内角和与外角和, 并介绍了正多边形的概念和四边形的不稳定性.
平行四边形部分: 学生在小学已经学过平行四边形, 教材直接给出平行四边形的概念, 并通过学生自己的观察与思考得出平行四边形的性质; 然后从平移和作图研究平行四边形的判定定理; 最后, 分别从平行四边形在角、边、对角线等方面的特殊性引入矩形、菱形的概念、性质和判定,继而从矩形、菱形的综合特 殊性得出正方形的概念和性质.
综合与实践: 教材通过地砖平铺的图案, 介绍平面镶嵌的概念, 然后引导学生观察利用正多边形平面镶嵌的图案, 总结归纳能够进行平面镶嵌的多边形的性质,最后引导学生利用一种或两种正多边形进行设计创作.
本章的重点是平行四边形的性质和判定,四边形的有关概念以及多边形的内角和与外角和为平行四边形的学习做必要的铺垫.矩形、菱形、正方形都是特殊 的平行四边形, 它们的概念、性质以及判定都是建立在平行四边形的基础之上的. 本章的关键是要求学生掌握平行四边形的概念、性质和判定, 并能熟练地应用这 些知识解决问题.
学情分析
初中平面几何的内容安排是在对几何基本概念形成直观认识的基础上,按照图形的复杂程度先后安排教学内容.沪科版初中数学教材亦是如此, 在学习本单元之前, 学生已经学习过直线(相交线、平行线、角平分 线、线段的垂直平分线等)、三角形(一般三角形、等腰三角形、直角三角形等) 等知识, 之后将要学习圆等知识,“四边形”与这些几何图形在研究对象、研究内容、研究方法方面都具有相似性和一致性. 在本章内容的学习过程中, 常常需要把四边形的问题转化为三角形问题来解决, 因而需要反复地运用到平行线和三角形的有关知识,这也体现一种转化思想.
三、单元学习与作业目标
1.了解多边形和正多边形的有关概念,了解四边形的不稳定性
2.掌握多边形内角和与外角和公式
3.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系.
4.探索并证明平行四边形、矩形、菱形、正方形的性质和判定定理,掌握正方形具有矩形和菱形的一切性质.
5.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
6.探索并证明三角形中位线定理.
7.了解平面图形的镶嵌的含义, 知道哪些平面图形可以镶嵌, 镶嵌的理由及简单的镶嵌设计.
四、课时作业
第一课时(19.1.1 多边形内角和(1))
作业 1(基础达标作业)
作业内容
(1)一个多边形截去一个角后,形成一个七边形,那么原多边形边数为( ).
A.6 B.6或7 C.6或8 D.6或7或8
(2)如图,足球的表面是由12块正五边形的黑皮和20块正六边形的白皮拼接而成,那么一块正五边形黑皮的内角和是( )
A. B. C. D.
(3)正多边形的一个内角的度数不可能是( )
A. B. C. D.
(4)若一个边形的内角和为,则的值是()
A.4 B.5 C.6 D.7
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题主要考查了截一个多边形,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变,据此画图利用数形结合的思想求解即可.第(2)小题本题主要考查了多边形内角和定理,熟知多边形内角和计算公式是解题的关键.第(3)小题本题考查了多边形的内角和公式,熟记多边形的内角和公式为是解答本题的关键.设正多边形的边数为n,然后根据多边形的内角和公式逐项分析即可.第(4)小题主要考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
作业 2(素养提升作业)
1.作业内容
(1)一个多边形的内角和为,则这个多边形的边数为 .
(2)如图,将透明直尺叠放在正五边形徽章上,若直尺的一边于点O,且经过点B,另一边经过点E,则的度数为 .
(3)如图所示,五边形的内角都相等,AM⊥CD,垂足为M,连接,若,求的度数.
(4)①如图1,在中,分别平分和,请直接写出与的数量关系: .
②如图2,在四边形中,分别平分和,试探究与的数量关系,并说明理由.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题本题考查了多边形的内角和,熟练掌握多边形的内角和公式是解题关键.第(2)小题本题考查了正多边形的内角问题、多边形的内角和,通过训练,使学生熟练掌握相关知识;第(3)小题主要考查了多边形内角和,根据多边形内角和度数可得每一个角的度数,然后再利用方程解答.第(4)本题考查了角平分线的定义、三角形的内角和定理、多边形的内角和定理,熟练掌握以上知识点并灵活运用是解此题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 四边形
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 19.1.1《多边形内角和》(1) 19.1多边形内角和
2 19.1.1《多边形内角和》(2) 19.1多边形内角和
3 19.2.1《平行四边形的判定》 19.2平行四边形
4 19.2.2《平行四边形的性质》(1) 19.2平行四边形
5 19.2.2《平行四边形的性质》(2) 19.2平行四边形
6 19.3.1 矩形的性质和判定(第1课时) 19.3矩形 菱形 正方形
7 19.3.2 矩形的性质和判定(第2课时) 19.3矩形 菱形 正方形
8 19.3.3 菱形的性质和判定(第1课时) 19.3矩形 菱形 正方形
9 19.3.4 菱形的性质和判定(第2课时) 19.3矩形 菱形 正方形
10 19.3.5 正方形的性质和判定 19.3矩形 菱形 正方形
11 19.4 综合与实践 多边形的镶嵌 19.4 综合与实践 多边形的镶嵌
二、单元分析
(一)课标要求
1.理解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;了解四边形的不稳定性。
2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分。探索并证明平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
3.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
内容分析
本单元教材首先从多边形的概念着手, 研究多边形的内角和与外角和, 并介绍了正多边形的概念和四边形的不稳定性.
平行四边形部分: 学生在小学已经学过平行四边形, 教材直接给出平行四边形的概念, 并通过学生自己的观察与思考得出平行四边形的性质; 然后从平移和作图研究平行四边形的判定定理; 最后, 分别从平行四边形在角、边、对角线等方面的特殊性引入矩形、菱形的概念、性质和判定,继而从矩形、菱形的综合特 殊性得出正方形的概念和性质.
综合与实践: 教材通过地砖平铺的图案, 介绍平面镶嵌的概念, 然后引导学生观察利用正多边形平面镶嵌的图案, 总结归纳能够进行平面镶嵌的多边形的性质,最后引导学生利用一种或两种正多边形进行设计创作.
本章的重点是平行四边形的性质和判定,四边形的有关概念以及多边形的内角和与外角和为平行四边形的学习做必要的铺垫.矩形、菱形、正方形都是特殊 的平行四边形, 它们的概念、性质以及判定都是建立在平行四边形的基础之上的. 本章的关键是要求学生掌握平行四边形的概念、性质和判定, 并能熟练地应用这 些知识解决问题.
学情分析
初中平面几何的内容安排是在对几何基本概念形成直观认识的基础上,按照图形的复杂程度先后安排教学内容.沪科版初中数学教材亦是如此, 在学习本单元之前, 学生已经学习过直线(相交线、平行线、角平分 线、线段的垂直平分线等)、三角形(一般三角形、等腰三角形、直角三角形等) 等知识, 之后将要学习圆等知识,“四边形”与这些几何图形在研究对象、研究内容、研究方法方面都具有相似性和一致性. 在本章内容的学习过程中, 常常需要把四边形的问题转化为三角形问题来解决, 因而需要反复地运用到平行线和三角形的有关知识,这也体现一种转化思想.
三、单元学习与作业目标
1.了解多边形和正多边形的有关概念,了解四边形的不稳定性
2.掌握多边形内角和与外角和公式
3.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系.
4.探索并证明平行四边形、矩形、菱形、正方形的性质和判定定理,掌握正方形具有矩形和菱形的一切性质.
5.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
6.探索并证明三角形中位线定理.
7.了解平面图形的镶嵌的含义, 知道哪些平面图形可以镶嵌, 镶嵌的理由及简单的镶嵌设计.
四、课时作业
第一课时(19.1.1 多边形内角和(1))
作业 1(基础达标作业)
作业内容
(1)一个多边形截去一个角后,形成一个七边形,那么原多边形边数为( ).
A.6 B.6或7 C.6或8 D.6或7或8
【答案】D
【分析】本题主要考查了截一个多边形,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变,据此画图利用数形结合的思想求解即可.
【详解】解:如图所示,六边形,七边形和八边形截去一个角后都可以形成七边形,
∴原多边形边数为6或7或8,
故选:D.
(2)如图,足球的表面是由12块正五边形的黑皮和20块正六边形的白皮拼接而成,那么一块正五边形黑皮的内角和是( )
A. B. C. D.
【答案】C
【分析】根据多边形内角和公式进行求解即可.本题主要考查了多边形内角和定理,熟知多边形内角和计算公式是解题的关键.
【详解】解:∵,
∴足球图片中的一块黑色皮块的内角和是,
故选C.
(3)正多边形的一个内角的度数不可能是( )
A. B. C. D.
【答案】B
【分析】本题考查了多边形的内角和公式,熟记多边形的内角和公式为是解答本题的关键.设正多边形的边数为n,然后根据多边形的内角和公式逐项分析即可.
【详解】解:设正多边形的边数为n,
A.当,解得,故不符合题意;
B.当,解得,n不为正整数,故符合题意;
C.当,解得,故不符合题意;
D.当,解得,故不符合题意.
故选:B.
(4)若一个边形的内角和为,则的值是()
A.4 B.5 C.6 D.7
【答案】D
【分析】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
根据边形的内角和为列出关于的方程,解方程即可求出边数的值.
【详解】解:这个多边形的边数是,
则,
解得:.
故选:D.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题主要考查了截一个多边形,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变,据此画图利用数形结合的思想求解即可.第(2)小题本题主要考查了多边形内角和定理,熟知多边形内角和计算公式是解题的关键.第(3)小题本题考查了多边形的内角和公式,熟记多边形的内角和公式是解答本题的关键.设正多边形的边数为n,然后根据多边形的内角和公式逐项分析即可.第(4)小题主要考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
作业 2(素养提升作业)
1.作业内容
(1)一个多边形的内角和为,则这个多边形的边数为 .
【答案】7
【分析】本题考查了多边形的内角和,熟练掌握多边形的内角和公式是解题关键.根据多边形的内角和公式“,其中且为正整数”求解即可得.
【详解】解:设这个多边形的边数为,
由题意得:,
解得,
即这个多边形的边数为7,
故答案为:7.
(2)如图,将透明直尺叠放在正五边形徽章上,若直尺的一边于点O,且经过点B,另一边经过点E,则的度数为 .
【答案】
【分析】本题考查了正多边形的内角问题、多边形的内角和,根据多边形的内角和公式及五边形为正五边形得,再根据四边形中多边形的内角和得,进而可求解,熟练掌握相关知识是解题的关键.
【详解】解:五边形为正五边形,
,
,∠BOE=900
四边形中,,
,
故答案为:.
(3)如图所示,五边形的内角都相等,AM⊥CD,垂足为M,连接,若,求的度数.
【答案】
【分析】本题主要考查了多边形内角和,根据多边形内角和度数可得每一个角的度数,然后再利用方程解答.
【详解】解:∵五边形的内角都相等,
∴,
∵,
∴,
设为,则,,,
可得:,
解得:,
∴,
(4)①如图1,在中,分别平分和,请直接写出与的数量关系: .
②如图2,在四边形中,分别平分和,试探究与的数量关系,并说明理由.
【答案】①;②.理由见解析
【分析】本题考查了角平分线的定义、三角形的内角和定理、多边形的内角和定理,熟练掌握以上知识点并灵活运用是解此题的关键.
(1)根据角平分线的定义以及三角形的内角和定理进行计算即可得出答案;
(2)根据角平分线的定义以及四边形的内角和定理进行计算即可得出答案.
【详解】解:①分别平分和,
∴,.
在中,由三角形内角和定理得,
,
,
,
故答案为:;
②,
理由如下:
分别平分和,
∴,.
在中,由三角形内角和定理得,
,
而,
∴.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题本题考查了多边形的内角和,熟练掌握多边形的内角和公式是解题关键.第(2)小题本题考查了正多边形的内角问题、多边形的内角和,通过训练,使学生熟练掌握相关知识;第(3)小题主要考查了多边形内角和,根据多边形内角和度数可得每一个角的度数,然后再利用方程解答.第(4)本题考查了角平分线的定义、三角形的内角和定理、多边形的内角和定理,熟练掌握以上知识点并灵活运用是解此题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)