本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
2.4 函数的零点 学案
【预习要点及要求】
1.理解函数零点的概念。
2.会判定二次函数零点的个数。
3.会求函数的零点。
4.掌握函数零点的性质。
5.能结合二次函数图象判断一元二次方程式根存在性及根的个数。
6.理解函数零点与方程式根的关系。
7.会用零点性质解决实际问题。
【知识再现】
1.如何判一元二次方程式实根个数?
2.二次函数顶点坐标,对称轴分别是什么?
【概念探究】
阅读课本70——71页完成下列问题
1.已知函数, =0, <0, >0。
叫做函数的零点。
2.请你写出零点的定义。
3.如何求函数的零点?
4.函数的零点与图像什么关系?
【例题解析】
1.阅读课本71页完成例题。
例:求函数的零点,并画出它的图象。
2.由上例函数值大于0,小于0,等于0时自变量取值范围分别是什么?
3.请思考求函数零点对作函数简图有什么作用?
4.完成72练习B1、2
【总结点拨】
对概念理解及对例题的解释
1.不是所有函数都有零点
2.二次函数零点个数的判定转化为二次方程实根的个数的判定。
3.函数零点有变量零点和不变量零点。
4.求三次函数零点,关键是正确的因式分解,作图像可先由零点分析出函数值的正负变化情况,再适当取点作出图像。
【例题讲解】
例1.函数仅有一个零点,求实数的取值范围。
例2.函数零点所在大致区间是( )
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
例3.关于的二次方程,若方程式有两根,其中一根在区间内,另一根在(1,2)内,求的范围。
参考答案:
例1.解:①若为一次函数,易知函数仅有一个零点。
②若为二次函数,仅有一个实根,△=1+4
综上:或时,函数仅有一个零点。
例2.C
例3.解:由题意知
【当堂练习】
1.下列函数中在[1,2]上有零点的是( )
A. B.
C. D.
2.若方程在(0,1)内恰有一个实根,则的取值范围是( )
A. B. C. D.
3.函数,若,则在上零点的个数为( )
A.至多有一个 B.有一个或两个 C.有且只有一个 D.一个也没有
4.已知函数是R上的奇函数,其零点,……,则= 。
5.一次函数在[0,1]无零点,则取值范围为 。
6.函数有两个零点,且都大于2,求的取值范围。
参考答案:
1.D
2.B
3.C
4.0
5.
6.解
www.
w.w.w.k.s.5.u.c.o.m
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网