19.2.2《平行四边形的性质》(1) 作业设计

文档属性

名称 19.2.2《平行四边形的性质》(1) 作业设计
格式 zip
文件大小 942.3KB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2024-04-26 15:57:35

文档简介

中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 四边形
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 19.1.1《多边形内角和》(1) 19.1多边形内角和
2 19.1.1《多边形内角和》(2) 19.1多边形内角和
3 19.2.1《平行四边形的判定》 19.2平行四边形
4 19.2.2《平行四边形的性质》(1) 19.2平行四边形
5 19.2.2《平行四边形的性质》(2) 19.2平行四边形
6 19.3.1 矩形的性质和判定(第1课时) 19.3矩形 菱形 正方形
7 19.3.2 矩形的性质和判定(第2课时) 19.3矩形 菱形 正方形
8 19.3.3 菱形的性质和判定(第1课时) 19.3矩形 菱形 正方形
9 19.3.4 菱形的性质和判定(第2课时) 19.3矩形 菱形 正方形
10 19.3.5 正方形的性质和判定 19.3矩形 菱形 正方形
11 19.4 综合与实践 多边形的镶嵌 19.4 综合与实践 多边形的镶嵌
二、单元分析
(一)课标要求
1.理解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;了解四边形的不稳定性。
2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分。探索并证明平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
3.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
内容分析
本单元教材首先从多边形的概念着手, 研究多边形的内角和与外角和, 并介绍了正多边形的概念和四边形的不稳定性.
平行四边形部分: 学生在小学已经学过平行四边形, 教材直接给出平行四边形的概念, 并通过学生自己的观察与思考得出平行四边形的性质; 然后从平移和作图研究平行四边形的判定定理; 最后, 分别从平行四边形在角、边、对角线等方面的特殊性引入矩形、菱形的概念、性质和判定,继而从矩形、菱形的综合特 殊性得出正方形的概念和性质.
综合与实践: 教材通过地砖平铺的图案, 介绍平面镶嵌的概念, 然后引导学生观察利用正多边形平面镶嵌的图案, 总结归纳能够进行平面镶嵌的多边形的性质,最后引导学生利用一种或两种正多边形进行设计创作.
本章的重点是平行四边形的性质和判定,四边形的有关概念以及多边形的内角和与外角和为平行四边形的学习做必要的铺垫.矩形、菱形、正方形都是特殊 的平行四边形, 它们的概念、性质以及判定都是建立在平行四边形的基础之上的. 本章的关键是要求学生掌握平行四边形的概念、性质和判定, 并能熟练地应用这 些知识解决问题.
学情分析
初中平面几何的内容安排是在对几何基本概念形成直观认识的基础上,按照图形的复杂程度先后安排教学内容.沪科版初中数学教材亦是如此, 在学习本单元之前, 学生已经学习过直线(相交线、平行线、角平分 线、线段的垂直平分线等)、三角形(一般三角形、等腰三角形、直角三角形等) 等知识, 之后将要学习圆等知识,“四边形”与这些几何图形在研究对象、研究内容、研究方法方面都具有相似性和一致性. 在本章内容的学习过程中, 常常需要把四边形的问题转化为三角形问题来解决, 因而需要反复地运用到平行线和三角形的有关知识,这也体现一种转化思想.
三、单元学习与作业目标
1.了解多边形和正多边形的有关概念,了解四边形的不稳定性
2.掌握多边形内角和与外角和公式
3.理解平行四边形、矩形、菱形、正方形的概念,以及它们 之间的关系.
4.探索并证明平行四边形、矩形、菱形、正方形的性质和判 定定理,掌握正方形具有矩形和菱形的一切性质.
5.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
6.探索并证明三角形中位线定理.
7.了解平面图形的镶嵌的含义, 知道哪些平面图形可以镶嵌, 镶嵌的理由及简单的镶嵌设计.
四、课时作业
第四课时(19.2.2 平行四边形的性质(1))
作业 1(基础达标作业)
作业内容
(1)用四根木条钉成一个平行四边形,把它拉成一个长方形,这时长方形与原平行四边形相比,面积(  )
A.不变 B.减少了
C.增大了 D.以上说法都不对
(2))如图,在中,,则的度数为( ).
A.40 B.50 C.100 D.130
(3)在中,,则的度数为( )
A. B. C. D.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题考查平行四边形的性质,根据平行四边形的面积等于底乘以高解答即可.
第(2)小题主要考查了平行四边形的性质,平行线的性质,根据平行四边形对边平行即可,有利于学生对于平行四边形性质的更好理解。
第(3)小题考查了平行四边形的性质,熟练掌握平行四边形对角相等、邻角互补是解题的关键.
作业 2(素养提升作业)
1.作业内容
(1)如图,在中,平分,交于点F,平分,交于点E,,,则长为 .
(2)如图,在中,过对角线的交点O,,则四边形的周长为 .
(3)在四边形中,,,,,点从出发以的速度向运动,点从点出发,以的速度向点运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t.
若是上一点,且,t取何值时,以、、、为顶点的四边形是平行四边形?
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题主要考查了平行四边形的性质,平行线的性质,角平分线的定义,等角对等边;熟练掌握平行四边形的性质,得出AB=AF是解题的关键.
第(2)小题主要考查了平行四边形的基本性质,解题时注意:平行四边形的对角线互相平分,平行四边形是中心对称图形.
第(3)小题考查了平行四边形的性质,一元一次方程的应用.熟练掌握平行四边形的性质,一元一次方程的应用是解题的关键.此题旨在培养学生熟练掌握平行四边形的性质以及动点问题的思考方法。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 四边形
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 19.1.1《多边形内角和》(1) 19.1多边形内角和
2 19.1.1《多边形内角和》(2) 19.1多边形内角和
3 19.2.1《平行四边形的判定》 19.2平行四边形
4 19.2.2《平行四边形的性质》(1) 19.2平行四边形
5 19.2.2《平行四边形的性质》(2) 19.2平行四边形
6 19.3.1 矩形的性质和判定(第1课时) 19.3矩形 菱形 正方形
7 19.3.2 矩形的性质和判定(第2课时) 19.3矩形 菱形 正方形
8 19.3.3 菱形的性质和判定(第1课时) 19.3矩形 菱形 正方形
9 19.3.4 菱形的性质和判定(第2课时) 19.3矩形 菱形 正方形
10 19.3.5 正方形的性质和判定 19.3矩形 菱形 正方形
11 19.4 综合与实践 多边形的镶嵌 19.4 综合与实践 多边形的镶嵌
二、单元分析
(一)课标要求
1.理解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;了解四边形的不稳定性。
2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分。探索并证明平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
3.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
内容分析
本单元教材首先从多边形的概念着手, 研究多边形的内角和与外角和, 并介绍了正多边形的概念和四边形的不稳定性.
平行四边形部分: 学生在小学已经学过平行四边形, 教材直接给出平行四边形的概念, 并通过学生自己的观察与思考得出平行四边形的性质; 然后从平移和作图研究平行四边形的判定定理; 最后, 分别从平行四边形在角、边、对角线等方面的特殊性引入矩形、菱形的概念、性质和判定,继而从矩形、菱形的综合特 殊性得出正方形的概念和性质.
综合与实践: 教材通过地砖平铺的图案, 介绍平面镶嵌的概念, 然后引导学生观察利用正多边形平面镶嵌的图案, 总结归纳能够进行平面镶嵌的多边形的性质,最后引导学生利用一种或两种正多边形进行设计创作.
本章的重点是平行四边形的性质和判定,四边形的有关概念以及多边形的内角和与外角和为平行四边形的学习做必要的铺垫.矩形、菱形、正方形都是特殊 的平行四边形, 它们的概念、性质以及判定都是建立在平行四边形的基础之上的. 本章的关键是要求学生掌握平行四边形的概念、性质和判定, 并能熟练地应用这 些知识解决问题.
学情分析
初中平面几何的内容安排是在对几何基本概念形成直观认识的基础上,按照图形的复杂程度先后安排教学内容.沪科版初中数学教材亦是如此, 在学习本单元之前, 学生已经学习过直线(相交线、平行线、角平分 线、线段的垂直平分线等)、三角形(一般三角形、等腰三角形、直角三角形等) 等知识, 之后将要学习圆等知识,“四边形”与这些几何图形在研究对象、研究内容、研究方法方面都具有相似性和一致性. 在本章内容的学习过程中, 常常需要把四边形的问题转化为三角形问题来解决, 因而需要反复地运用到平行线和三角形的有关知识,这也体现一种转化思想.
三、单元学习与作业目标
1.了解多边形和正多边形的有关概念,了解四边形的不稳定性
2.掌握多边形内角和与外角和公式
3.理解平行四边形、矩形、菱形、正方形的概念,以及它们 之间的关系.
4.探索并证明平行四边形、矩形、菱形、正方形的性质和判 定定理,掌握正方形具有矩形和菱形的一切性质.
5.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
6.探索并证明三角形中位线定理.
7.了解平面图形的镶嵌的含义, 知道哪些平面图形可以镶嵌, 镶嵌的理由及简单的镶嵌设计.
四、课时作业
第四课时(19.2.2 平行四边形的性质(1))
作业 1(基础达标作业)
作业内容
(1)用四根木条钉成一个平行四边形,把它拉成一个长方形,这时长方形与原平行四边形相比,面积(  )
A.不变 B.减少了
C.增大了 D.以上说法都不对
【答案】C
【分析】此题考查平行四边形的性质,根据平行四边形的面积等于底乘以高解答即可.
【详解】解:∵用四根木条钉成一个平行四边形,把它拉成一个长方形,
∴平行四边形和长方形的底不变,而高变大,
∴长方形与原平行四边形相比,面积增大,
故选:C.
(2))如图,在中,,则的度数为( ).
A.40 B.50 C.100 D.130
【答案】D
【分析】本题主要考查了平行四边形的性质,平行线的性质,根据平行四边形对边平行得到,则.
【详解】解:∵四边形是平行四边形,
∴,
∵,
∴,
故选D.
(3)在中,,则的度数为( )
A. B. C. D.
【答案】A
【分析】本题考查了平行四边形的性质,熟练掌握平行四边形对角相等、邻角互补是解题的关键.
由平行四边形的性质得,则,再求出,即可解决问题.
【详解】解:∵四边形是平行四边形,

A=C=400
故选:A.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题考查平行四边形的性质,根据平行四边形的面积等于底乘以高解答即可.
第(2)小题主要考查了平行四边形的性质,平行线的性质,根据平行四边形对边平行即可,有利于学生对于平行四边形性质的更好理解。
第(3)小题考查了平行四边形的性质,熟练掌握平行四边形对角相等、邻角互补是解题的关键.
作业 2(素养提升作业)
1.作业内容
(1)如图,在中,平分,交于点F,平分,交于点E,,,则长为 .
【答案】3
【分析】本题考查了平行四边形的性质,平行线的性质,角平分线的定义,等角对等边;熟练掌握平行四边形的性质,得出是解题的关键.
根据平行四边形的对边平行且相等可得,,;根据两直线平行,内错角相等可得;根据从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线可得;推得,根据等角对等边可得,,即可列出等式,求解.
【详解】解:∵四边形是平行四边形,
∴,,,
∵,
∴,
∵平分,
∴,
则,
∴,
同理可证:,
∵,
即,
解得:;
故答案为:3.
(2)如图,在中,过对角线的交点O,,则四边形的周长为 .
【答案】10
【分析】此题主要考查了平行四边形的基本性质,解题时注意:平行四边形的对角线互相平分,平行四边形是中心对称图形.根据平行四边形的中心对称性,可知把平行四边形分成两个相等的部分,先求平行四边形的周长,再求的长,即可求出四边形的周长.
【详解】解:根据平行四边形的中心对称性得:,
∵的周长,
∴四边形的周长的周长.
故答案为:10.
(3)在四边形中,,,,,点从出发以的速度向运动,点从点出发,以的速度向点运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t.
若是上一点,且,t取何值时,以、、、为顶点的四边形是平行四边形?
【答案】或
【分析】本题考查了平行四边形的性质,一元一次方程的应用.熟练掌握平行四边形的性质,一元一次方程的应用是解题的关键.
由题意知,分当点在线段上,当在线段上,两种情况求解;①当点在线段上,时,即,计算求解即可;②当在线段上,时,即,计算求解即可.
【详解】解:∵,是上一点,即,
∴,,
①当点在线段上,时,以、、、为顶点的四边形是平行四边形,
∴,
解得;
②当在线段上,时,以、、、为顶点的四边形是平行四边形,
∴,
解得;
综上所述,或时,以、、、为顶点的四边形是平行四边形.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题主要考查了平行四边形的性质,平行线的性质,角平分线的定义,等角对等边;熟练掌握平行四边形的性质,得出AB=AF是解题的关键.
第(2)小题主要考查了平行四边形的基本性质,解题时注意:平行四边形的对角线互相平分,平行四边形是中心对称图形.
第(3)小题考查了平行四边形的性质,一元一次方程的应用.熟练掌握平行四边形的性质,一元一次方程的应用是解题的关键.此题旨在培养学生熟练掌握平行四边形的性质以及动点问题的思考方法。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)