中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 四边形
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 19.1.1《多边形内角和》(1) 19.1多边形内角和
2 19.1.1《多边形内角和》(2) 19.1多边形内角和
3 19.2.1《平行四边形的判定》 19.2平行四边形
4 19.2.2《平行四边形的性质》(1) 19.2平行四边形
5 19.2.2《平行四边形的性质》(2) 19.2平行四边形
6 19.3.1 矩形的性质和判定(第1课时) 19.3矩形 菱形 正方形
7 19.3.2 矩形的性质和判定(第2课时) 19.3矩形 菱形 正方形
8 19.3.3 菱形的性质和判定(第1课时) 19.3矩形 菱形 正方形
9 19.3.4 菱形的性质和判定(第2课时) 19.3矩形 菱形 正方形
10 19.3.5 正方形的性质和判定 19.3矩形 菱形 正方形
11 19.4 综合与实践 多边形的镶嵌 19.4 综合与实践 多边形的镶嵌
二、单元分析
(一)课标要求
1.理解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;了解四边形的不稳定性。
2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分。探索并证明平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
3.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
内容分析
本单元教材首先从多边形的概念着手, 研究多边形的内角和与外角和, 并介绍了正多边形的概念和四边形的不稳定性.
平行四边形部分: 学生在小学已经学过平行四边形, 教材直接给出平行四边形的概念, 并通过学生自己的观察与思考得出平行四边形的性质; 然后从平移和作图研究平行四边形的判定定理; 最后, 分别从平行四边形在角、边、对角线等方面的特殊性引入矩形、菱形的概念、性质和判定,继而从矩形、菱形的综合特 殊性得出正方形的概念和性质.
综合与实践: 教材通过地砖平铺的图案, 介绍平面镶嵌的概念, 然后引导学生观察利用正多边形平面镶嵌的图案, 总结归纳能够进行平面镶嵌的多边形的性质,最后引导学生利用一种或两种正多边形进行设计创作.
本章的重点是平行四边形的性质和判定,四边形的有关概念以及多边形的内角和与外角和为平行四边形的学习做必要的铺垫.矩形、菱形、正方形都是特殊 的平行四边形, 它们的概念、性质以及判定都是建立在平行四边形的基础之上的. 本章的关键是要求学生掌握平行四边形的概念、性质和判定, 并能熟练地应用这 些知识解决问题.
学情分析
初中平面几何的内容安排是在对几何基本概念形成直观认识的基础上,按照图形的复杂程度先后安排教学内容.沪科版初中数学教材亦是如此, 在学习本单元之前, 学生已经学习过直线(相交线、平行线、角平分 线、线段的垂直平分线等)、三角形(一般三角形、等腰三角形、直角三角形等) 等知识, 之后将要学习圆等知识,“四边形”与这些几何图形在研究对象、研究内容、研究方法方面都具有相似性和一致性. 在本章内容的学习过程中, 常常需要把四边形的问题转化为三角形问题来解决, 因而需要反复地运用到平行线和三角形的有关知识,这也体现一种转化思想.
三、单元学习与作业目标
1.了解多边形和正多边形的有关概念,了解四边形的不稳定性
2.掌握多边形内角和与外角和公式
3.理解平行四边形、矩形、菱形、正方形的概念,以及它们 之间的关系.
4.探索并证明平行四边形、矩形、菱形、正方形的性质和判 定定理,掌握正方形具有矩形和菱形的一切性质.
5.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
6.探索并证明三角形中位线定理.
7.了解平面图形的镶嵌的含义, 知道哪些平面图形可以镶嵌, 镶嵌的理由及简单的镶嵌设计.
四、课时作业
第五课时(19.2.2 平行四边形的性质(2))
作业 1(基础达标作业)
作业内容
(1)如图,中,过对角线的交点,,,,则四边形的周长为( )
A.16 B.19 C.22 D.32
【答案】C
【分析】本题考查了平行线的性质,全等三角形的性质与判定;证明,得出,,进而可得四边形的周长为,即可求解.
【详解】解:四边形是平行四边形,
,,
.
在和中,
, ,,
,
,.
又,,,,
四边形的周长为:.
故选C.
(2)如图,点是的对角线交点,为中点,交于点,若,则的值为( )
A.2 B.4 C. D.8
【答案】A
【分析】由本题考查平行四边形的性质,三角形中线的性质;利用平行四边形的性质得出,根据三角形中位线的性质得出,即可得出答案.
【详解】解:点是 的对角线交点,
,
为中点,
∴
,
.
故选:A.
(3)如图,某广场上有一个形状是平行四边形的花坛,分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有,,那么下列说法中错误的是( )
A.红花、绿花种植面积一定相等
B.紫花、橙花种植面积一定相等
C.绿花、蓝花种植面积一定相等
D.蓝花、黄花种植面积一定相等
【答案】C
【分析】本题考查的是平行四边形的性质,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四,同时充分利用等量相加减原理解题,否则容易从直观上对产生质疑.
根据平行四边形的性质可知把一个平行四边形分割成四个小平行四边形,我们知道,一条对角线可以把一个平行四边形的面积一分为二,据此可从图中获得,,,根据等量相减原理知,依此就可找出题中说法错误的.
【详解】解:∵,
把一个平行四边形分割成四个小平行四边形,
∴一条对角线可以把一个平行四边形的面积一分为二且相等,
得,故A正确;
,
根据等量相减原理知,故B正确;
与显然不相等.故C错误;
,故D正确;
故答案为:C
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题主要考查平行线的性质,全等三角形的性质与判定等知识,旨在使学生加深对平行四边形对角线知识的理解。
第(2)小题考查平行四边形的性质,三角形中线的性质相关知识,提高学生综合分析问题的能力;
第(3小题)考查的是平行四边形的性质,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四,同时充分利用等量相加减原理解题,提高学生应用综合应用知识的能力。
作业 2(素养提升作业)
1.作业内容
(1)如图,在平行四边形中,,按下列步骤作图:①分别以点,为圆心,大于的长为半径画弧,两弧交点分别为点,;②过点,作直线,交于点.如果的周长为8,那么平行四边形的周长是 .
【答案】16
【分析】本题考查了线段垂直平分线的性质及平行四边形的性质,熟练掌握线段垂直平分线的性质及平行四边形的性质是解答本题的关键;
由中垂线的作法可知,然后由的周长为8,可知,继而可求出平行四边形的周长.
【详解】解:由作法得:垂直平分,
,
的周长为8,
即,
,
即,
四边形是平行四边形,
,,
平行四边形的周长.
故答案为:16.
(2)如图,在中,,对角线与相交于点O,,则的周长为 .
【答案】22
【分析】本题考查平行四边形的性质以及三角形周长等知识,解题的关键是记住平行四边形的对角线互相平分.根据平行四边形对角线互相平分求出的长,即可解决问题.
【详解】解:∵四边形是平行四边形,
∴,
∵,
∴,
∴的周长.
故答案为:22.
(3)如图平行四边形中,平分,交于点.
(1)请用尺规作的角平分线,交于点(保留作图痕迹,不写作法);
(2)根据(1)的作图,证明:.请在答题卡上完成相应的填空.
证明:四边形是平行四边形,
,,
(两直线平行,内错角相等),
又平分,平分,
,,
,
__________________(填推理的依据).
【答案】(1)见解析
(2);;;同位角相等,两直线平行
【分析】本题考查了尺规作图作角平分线,平行四边形的判定,
(1)根据题意作的角平分线,交于点;
(2)根据平行四边形的性质,角平分线的定义,进行推理证明,即可求解.
【详解】(1)解:图形如图所示:
(2)证明:四边形是平行四边形,
,,
(两直线平行,内错角相等),
又平分,平分,
,,
,
(同位角相等,两直线平行).
故答案为:,,,同位角相等,两直线平行.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题考查了线段垂直平分线的性质及平行四边形的性质,熟练掌握线段垂直平分线的性质及平行四边形的性质是解答本题的关键;
第(2)小题考查平行四边形的性质以及三角形周长等知识,解题的关键是记住平行四边形的对角线互相平分.根据平行四边形对角线互相平分求出OC+OB的长,即可解决问题.
第(3)小题本题考查了尺规作图作角平分线,平行四边形的判定,通过训练此题,有利于培养学生综合思维能力。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 四边形
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 19.1.1《多边形内角和》(1) 19.1多边形内角和
2 19.1.1《多边形内角和》(2) 19.1多边形内角和
3 19.2.1《平行四边形的判定》 19.2平行四边形
4 19.2.2《平行四边形的性质》(1) 19.2平行四边形
5 19.2.2《平行四边形的性质》(2) 19.2平行四边形
6 19.3.1 矩形的性质和判定(第1课时) 19.3矩形 菱形 正方形
7 19.3.2 矩形的性质和判定(第2课时) 19.3矩形 菱形 正方形
8 19.3.3 菱形的性质和判定(第1课时) 19.3矩形 菱形 正方形
9 19.3.4 菱形的性质和判定(第2课时) 19.3矩形 菱形 正方形
10 19.3.5 正方形的性质和判定 19.3矩形 菱形 正方形
11 19.4 综合与实践 多边形的镶嵌 19.4 综合与实践 多边形的镶嵌
二、单元分析
(一)课标要求
1.理解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;了解四边形的不稳定性。
2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分。探索并证明平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
3.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
内容分析
本单元教材首先从多边形的概念着手, 研究多边形的内角和与外角和, 并介绍了正多边形的概念和四边形的不稳定性.
平行四边形部分: 学生在小学已经学过平行四边形, 教材直接给出平行四边形的概念, 并通过学生自己的观察与思考得出平行四边形的性质; 然后从平移和作图研究平行四边形的判定定理; 最后, 分别从平行四边形在角、边、对角线等方面的特殊性引入矩形、菱形的概念、性质和判定,继而从矩形、菱形的综合特 殊性得出正方形的概念和性质.
综合与实践: 教材通过地砖平铺的图案, 介绍平面镶嵌的概念, 然后引导学生观察利用正多边形平面镶嵌的图案, 总结归纳能够进行平面镶嵌的多边形的性质,最后引导学生利用一种或两种正多边形进行设计创作.
本章的重点是平行四边形的性质和判定,四边形的有关概念以及多边形的内角和与外角和为平行四边形的学习做必要的铺垫.矩形、菱形、正方形都是特殊 的平行四边形, 它们的概念、性质以及判定都是建立在平行四边形的基础之上的. 本章的关键是要求学生掌握平行四边形的概念、性质和判定, 并能熟练地应用这 些知识解决问题.
学情分析
初中平面几何的内容安排是在对几何基本概念形成直观认识的基础上,按照图形的复杂程度先后安排教学内容.沪科版初中数学教材亦是如此, 在学习本单元之前, 学生已经学习过直线(相交线、平行线、角平分 线、线段的垂直平分线等)、三角形(一般三角形、等腰三角形、直角三角形等) 等知识, 之后将要学习圆等知识,“四边形”与这些几何图形在研究对象、研究内容、研究方法方面都具有相似性和一致性. 在本章内容的学习过程中, 常常需要把四边形的问题转化为三角形问题来解决, 因而需要反复地运用到平行线和三角形的有关知识,这也体现一种转化思想.
三、单元学习与作业目标
1.了解多边形和正多边形的有关概念,了解四边形的不稳定性
2.掌握多边形内角和与外角和公式
3.理解平行四边形、矩形、菱形、正方形的概念,以及它们 之间的关系.
4.探索并证明平行四边形、矩形、菱形、正方形的性质和判 定定理,掌握正方形具有矩形和菱形的一切性质.
5.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
6.探索并证明三角形中位线定理.
7.了解平面图形的镶嵌的含义, 知道哪些平面图形可以镶嵌, 镶嵌的理由及简单的镶嵌设计.
四、课时作业
第五课时(19.2.2 平行四边形的性质(2))
作业 1(基础达标作业)
作业内容
(1)如图,中,过对角线的交点,,,,则四边形的周长为( )
A.16 B.19 C.22 D.32
(2)如图,点是的对角线交点,为中点,交于点,若,则的值为( )
A.2 B.4 C. D.8
(3)如图,某广场上有一个形状是平行四边形的花坛,分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有,,那么下列说法中错误的是( )
A.红花、绿花种植面积一定相等
B.紫花、橙花种植面积一定相等
C.绿花、蓝花种植面积一定相等
D.蓝花、黄花种植面积一定相等
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题主要考查平行线的性质,全等三角形的性质与判定等知识,旨在使学生加深对平行四边形对角线知识的理解。
第(2)小题考查平行四边形的性质,三角形中线的性质相关知识,提高学生综合分析问题的能力;
第(3小题)考查的是平行四边形的性质,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四,同时充分利用等量相加减原理解题,提高学生应用综合应用知识的能力。
作业 2(素养提升作业)
1.作业内容
(1)如图,在平行四边形中,,按下列步骤作图:①分别以点,为圆心,大于的长为半径画弧,两弧交点分别为点,;②过点,作直线,交于点.如果的周长为8,那么平行四边形的周长是 .
(2)如图,在中,,对角线与相交于点O,,则的周长为 .
(3)如图平行四边形中,平分,交于点.
(1)请用尺规作的角平分线,交于点(保留作图痕迹,不写作法);
(2)根据(1)的作图,证明:.请在答题卡上完成相应的填空.
证明:四边形是平行四边形,
,,
(两直线平行,内错角相等),
又平分,平分,
,,
,
__________________(填推理的依据).
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题考查了线段垂直平分线的性质及平行四边形的性质,熟练掌握线段垂直平分线的性质及平行四边形的性质是解答本题的关键;
第(2)小题考查平行四边形的性质以及三角形周长等知识,解题的关键是记住平行四边形的对角线互相平分.根据平行四边形对角线互相平分求出OC+OB的长,即可解决问题.
第(3)小题本题考查了尺规作图作角平分线,平行四边形的判定,通过训练此题,有利于培养学生综合思维能力。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)