中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 四边形
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 19.1.1《多边形内角和》(1) 19.1多边形内角和
2 19.1.1《多边形内角和》(2) 19.1多边形内角和
3 19.2.1《平行四边形的判定》 19.2平行四边形
4 19.2.2《平行四边形的性质》(1) 19.2平行四边形
5 19.2.2《平行四边形的性质》(2) 19.2平行四边形
6 19.3.1 矩形的性质和判定(第1课时) 19.3矩形 菱形 正方形
7 19.3.2 矩形的性质和判定(第2课时) 19.3矩形 菱形 正方形
8 19.3.3 菱形的性质和判定(第1课时) 19.3矩形 菱形 正方形
9 19.3.4 菱形的性质和判定(第2课时) 19.3矩形 菱形 正方形
10 19.3.5 正方形的性质和判定 19.3矩形 菱形 正方形
11 19.4 综合与实践 多边形的镶嵌 19.4 综合与实践 多边形的镶嵌
二、单元分析
(一)课标要求
1.理解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;了解四边形的不稳定性。
2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分。探索并证明平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
3.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
内容分析
本单元教材首先从多边形的概念着手, 研究多边形的内角和与外角和, 并介绍了正多边形的概念和四边形的不稳定性.
平行四边形部分: 学生在小学已经学过平行四边形, 教材直接给出平行四边形的概念, 并通过学生自己的观察与思考得出平行四边形的性质; 然后从平移和作图研究平行四边形的判定定理; 最后, 分别从平行四边形在角、边、对角线等方面的特殊性引入矩形、菱形的概念、性质和判定,继而从矩形、菱形的综合特 殊性得出正方形的概念和性质.
综合与实践: 教材通过地砖平铺的图案, 介绍平面镶嵌的概念, 然后引导学生观察利用正多边形平面镶嵌的图案, 总结归纳能够进行平面镶嵌的多边形的性质,最后引导学生利用一种或两种正多边形进行设计创作.
本章的重点是平行四边形的性质和判定,四边形的有关概念以及多边形的内角和与外角和为平行四边形的学习做必要的铺垫.矩形、菱形、正方形都是特殊 的平行四边形, 它们的概念、性质以及判定都是建立在平行四边形的基础之上的. 本章的关键是要求学生掌握平行四边形的概念、性质和判定, 并能熟练地应用这 些知识解决问题.
学情分析
初中平面几何的内容安排是在对几何基本概念形成直观认识的基础上,按照图形的复杂程度先后安排教学内容.沪科版初中数学教材亦是如此, 在学习本单元之前, 学生已经学习过直线(相交线、平行线、角平分 线、线段的垂直平分线等)、三角形(一般三角形、等腰三角形、直角三角形等) 等知识, 之后将要学习圆等知识,“四边形”与这些几何图形在研究对象、研究内容、研究方法方面都具有相似性和一致性. 在本章内容的学习过程中, 常常需要把四边形的问题转化为三角形问题来解决, 因而需要反复地运用到平行线和三角形的有关知识,这也体现一种转化思想.
三、单元学习与作业目标
1.了解多边形和正多边形的有关概念,了解四边形的不稳定性
2.掌握多边形内角和与外角和公式
3.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系.
4.探索并证明平行四边形、矩形、菱形、正方形的性质和判 定定理,掌握正方形具有矩形和菱形的一切性质.
5.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
6.探索并证明三角形中位线定理.
7.了解平面图形的镶嵌的含义, 知道哪些平面图形可以镶嵌, 镶嵌的理由及简单的镶嵌设计.
四、课时作业
第六课时(19.3.1 矩形的性质和判定(1))
作业 1(基础达标作业)
作业内容
(1)下列性质中,矩形不一定具有的是( )
A.对角线相等 B.四个角都是直角 C.对角线互相垂直 D.是轴对称图形
【答案】C
【分析】本题考查矩形的性质,掌握矩形的性质是解题的关键.
【详解】解:A、矩形的对角线平分、相等,故A正确,不符合题意;
B、矩形的四个角都是直角,故B正确,不符合题意;
C、矩形对角线互相垂直,故C错误,符合题意;
D、矩形是轴对称图形,故D正确,不符合题意;
故选C.
(2)如图,点O是矩形的中心,E是上的点,沿折叠后,点B恰好与点O重合,若,则折痕的长为()
A. B. C. D.6
【答案】A
【分析】本题考查的是翻折变换,勾股定理,等腰三角形的性质和判定定理,矩形的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键;
先根据图形翻折变换的性质求出的长,再由勾股定理及等腰三角形的判定定理即可得出结论;
【详解】∵是翻折而成,
∴,,
∴,
∵是矩形的中心,
∴是等腰三角形,
∴
∴,
在中,,
即,解得,
在中,设,
则,
即,
解得,
∴.
故选:A.
(3)如图,矩形中,E为的中点,连结,过E作交点F,连结,若,则的度数为( )
A. B. C. D.
【答案】B
【分析】本题考查了矩形的性质,全等三角形的判定和性质,线段垂直平分线的性质,添加合适的辅助线构造全等三角形是解题的关键.延长,交的延长线于点G,根据矩形的性质可得,,,可证,根据全等三角形的性质可得,可知垂直平分,根据线段垂直平分线的性质可得,进一步可得,根据,可得,可表示出的度数,进一步可得的度数,再根据,可得的度数.
【详解】解:如图:延长,交的延长线于点G,
∵四边形是矩形
∴,,
∴
∵E为边中点,
∴
在和中
∴
∴
∵
∴垂直平分
∴,
∵
∴
∴
∵
∴
∵
∴
∴
故选:B
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题考查矩形的性质,掌握矩形的性质是解题的关键.
第(2)小题主要考查的是翻折变换,勾股定理,等腰三角形的性质和判定定理,矩形的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键;
第(3)小题本题考查了矩形的性质,全等三角形的判定和性质,线段垂直平分线的性质,添加合适的辅助线构造全等三角形是解题的关键.
作业 2(素养提升作业)
1.作业内容
(1)如图,矩形中,,.F是上一点,将沿所在的直线折叠,点A恰好落在边上的点E处,连接交于点G,取的中点H,连接,则 .
【答案】
【分析】本题考查图形的折叠,熟练掌握翻折的性质,矩形的性质,三角形中位线的性质是解题的关键.由折叠可知,垂直平分,连接,可得是的中位线,求出即可求.
【详解】解:由折叠可知,垂直平分,连接,
是的中点,
是的中点,
,
,,
,
,
故答案为:.
(2)如图,矩形中,,,为边上的动点,连接,于,为的中点,连接,以为边向右作等边,连接,则的最小值为 .
【答案】
【分析】本题主要考查了矩形的性质,三角形全等的判定与性质,等边三角形的性质等知识,取的中点,的中点,连接,,,,通过证明 ,得 ,在 中,利用三边关系即可求解,作辅助线构造出全等三角形是解题的关键.
【详解】如图,取的中点,的中点,连接,,,,
则,,,
∴,,
∴,
∴,
∴是等边三角形,
∴,,
∴,
在和中,
,
∴,
∴,
连接,由勾股定理得:,
∴,
∴的最小值为,
故答案为:.
(3)如图,在矩形中,点,分别是,的中点.求证:.
【答案】见解析
【分析】本题考查了矩形的性质,全等三角形的判定.由矩形的性质求得,,,由点,分别是,的中点,推出,利用即可证明.
【详解】证明:∵四边形是矩形,
∴,,,
∵点,分别是,的中点,
∴,
∴.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题考查图形的折叠,熟练掌握翻折的性质,矩形的性质,三角形中位线的性质是解题的关键.
第(2)小题主要考查了矩形的性质,三角形全等的判定与性质,等边三角形的性质等知识,有利于培养学生综合思维能力。
第(3)小题考查了矩形的性质,全等三角形的判定.由矩形的性质即可求得,有利于培养学生对知识的综合理解和运用。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 四边形
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 19.1.1《多边形内角和》(1) 19.1多边形内角和
2 19.1.1《多边形内角和》(2) 19.1多边形内角和
3 19.2.1《平行四边形的判定》 19.2平行四边形
4 19.2.2《平行四边形的性质》(1) 19.2平行四边形
5 19.2.2《平行四边形的性质》(2) 19.2平行四边形
6 19.3.1 矩形的性质和判定(第1课时) 19.3矩形 菱形 正方形
7 19.3.2 矩形的性质和判定(第2课时) 19.3矩形 菱形 正方形
8 19.3.3 菱形的性质和判定(第1课时) 19.3矩形 菱形 正方形
9 19.3.4 菱形的性质和判定(第2课时) 19.3矩形 菱形 正方形
10 19.3.5 正方形的性质和判定 19.3矩形 菱形 正方形
11 19.4 综合与实践 多边形的镶嵌 19.4 综合与实践 多边形的镶嵌
二、单元分析
(一)课标要求
1.理解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;了解四边形的不稳定性。
2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分。探索并证明平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
3.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
内容分析
本单元教材首先从多边形的概念着手, 研究多边形的内角和与外角和, 并介绍了正多边形的概念和四边形的不稳定性.
平行四边形部分: 学生在小学已经学过平行四边形, 教材直接给出平行四边形的概念, 并通过学生自己的观察与思考得出平行四边形的性质; 然后从平移和作图研究平行四边形的判定定理; 最后, 分别从平行四边形在角、边、对角线等方面的特殊性引入矩形、菱形的概念、性质和判定,继而从矩形、菱形的综合特 殊性得出正方形的概念和性质.
综合与实践: 教材通过地砖平铺的图案, 介绍平面镶嵌的概念, 然后引导学生观察利用正多边形平面镶嵌的图案, 总结归纳能够进行平面镶嵌的多边形的性质,最后引导学生利用一种或两种正多边形进行设计创作.
本章的重点是平行四边形的性质和判定,四边形的有关概念以及多边形的内角和与外角和为平行四边形的学习做必要的铺垫.矩形、菱形、正方形都是特殊 的平行四边形, 它们的概念、性质以及判定都是建立在平行四边形的基础之上的. 本章的关键是要求学生掌握平行四边形的概念、性质和判定, 并能熟练地应用这 些知识解决问题.
学情分析
初中平面几何的内容安排是在对几何基本概念形成直观认识的基础上,按照图形的复杂程度先后安排教学内容.沪科版初中数学教材亦是如此, 在学习本单元之前, 学生已经学习过直线(相交线、平行线、角平分 线、线段的垂直平分线等)、三角形(一般三角形、等腰三角形、直角三角形等) 等知识, 之后将要学习圆等知识,“四边形”与这些几何图形在研究对象、研究内容、研究方法方面都具有相似性和一致性. 在本章内容的学习过程中, 常常需要把四边形的问题转化为三角形问题来解决, 因而需要反复地运用到平行线和三角形的有关知识,这也体现一种转化思想.
三、单元学习与作业目标
1.了解多边形和正多边形的有关概念,了解四边形的不稳定性
2.掌握多边形内角和与外角和公式
3.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系.
4.探索并证明平行四边形、矩形、菱形、正方形的性质和判 定定理,掌握正方形具有矩形和菱形的一切性质.
5.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
6.探索并证明三角形中位线定理.
7.了解平面图形的镶嵌的含义, 知道哪些平面图形可以镶嵌, 镶嵌的理由及简单的镶嵌设计.
四、课时作业
第六课时(19.3.1 矩形的性质和判定(1))
作业 1(基础达标作业)
作业内容
(1)下列性质中,矩形不一定具有的是( )
A.对角线相等 B.四个角都是直角 C.对角线互相垂直 D.是轴对称图形
(2)如图,点O是矩形的中心,E是上的点,沿折叠后,点B恰好与点O重合,若,则折痕的长为()
A. B. C. D.6
(3)如图,矩形中,E为的中点,连结,过E作交点F,连结,若,则的度数为( )
A. B. C. D.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题考查矩形的性质,掌握矩形的性质是解题的关键.
第(2)小题主要考查的是翻折变换,勾股定理,等腰三角形的性质和判定定理,矩形的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键;
第(3)小题本题考查了矩形的性质,全等三角形的判定和性质,线段垂直平分线的性质,添加合适的辅助线构造全等三角形是解题的关键.
作业 2(素养提升作业)
1.作业内容
(1)如图,矩形中,,.F是上一点,将沿所在的直线折叠,点A恰好落在边上的点E处,连接交于点G,取的中点H,连接,则 .
(2)如图,矩形中,,,为边上的动点,连接,于,为的中点,连接,以为边向右作等边,连接,则的最小值为 .
(3)如图,在矩形中,点,分别是,的中点.求证:.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题考查图形的折叠,熟练掌握翻折的性质,矩形的性质,三角形中位线的性质是解题的关键.
第(2)小题主要考查了矩形的性质,三角形全等的判定与性质,等边三角形的性质等知识,有利于培养学生综合思维能力。
第(3)小题考查了矩形的性质,全等三角形的判定.由矩形的性质即可求得,有利于培养学生对知识的综合理解和运用。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)