中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 四边形
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 19.1.1《多边形内角和》(1) 19.1多边形内角和
2 19.1.1《多边形内角和》(2) 19.1多边形内角和
3 19.2.1《平行四边形的判定》 19.2平行四边形
4 19.2.2《平行四边形的性质》(1) 19.2平行四边形
5 19.2.2《平行四边形的性质》(2) 19.2平行四边形
6 19.3.1 矩形的性质和判定(第1课时) 19.3矩形 菱形 正方形
7 19.3.2 矩形的性质和判定(第2课时) 19.3矩形 菱形 正方形
8 19.3.3 菱形的性质和判定(第1课时) 19.3矩形 菱形 正方形
9 19.3.4 菱形的性质和判定(第2课时) 19.3矩形 菱形 正方形
10 19.3.5 正方形的性质和判定 19.3矩形 菱形 正方形
11 19.4 综合与实践 多边形的镶嵌 19.4 综合与实践 多边形的镶嵌
二、单元分析
(一)课标要求
1.理解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;了解四边形的不稳定性。
2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分。探索并证明平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
3.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
内容分析
本单元教材首先从多边形的概念着手, 研究多边形的内角和与外角和, 并介绍了正多边形的概念和四边形的不稳定性.
平行四边形部分: 学生在小学已经学过平行四边形, 教材直接给出平行四边形的概念, 并通过学生自己的观察与思考得出平行四边形的性质; 然后从平移和作图研究平行四边形的判定定理; 最后, 分别从平行四边形在角、边、对角线等方面的特殊性引入矩形、菱形的概念、性质和判定,继而从矩形、菱形的综合特 殊性得出正方形的概念和性质.
综合与实践: 教材通过地砖平铺的图案, 介绍平面镶嵌的概念, 然后引导学生观察利用正多边形平面镶嵌的图案, 总结归纳能够进行平面镶嵌的多边形的性质,最后引导学生利用一种或两种正多边形进行设计创作.
本章的重点是平行四边形的性质和判定,四边形的有关概念以及多边形的内角和与外角和为平行四边形的学习做必要的铺垫.矩形、菱形、正方形都是特殊 的平行四边形, 它们的概念、性质以及判定都是建立在平行四边形的基础之上的. 本章的关键是要求学生掌握平行四边形的概念、性质和判定, 并能熟练地应用这 些知识解决问题.
学情分析
初中平面几何的内容安排是在对几何基本概念形成直观认识的基础上,按照图形的复杂程度先后安排教学内容.沪科版初中数学教材亦是如此, 在学习本单元之前, 学生已经学习过直线(相交线、平行线、角平分 线、线段的垂直平分线等)、三角形(一般三角形、等腰三角形、直角三角形等) 等知识, 之后将要学习圆等知识,“四边形”与这些几何图形在研究对象、研究内容、研究方法方面都具有相似性和一致性. 在本章内容的学习过程中, 常常需要把四边形的问题转化为三角形问题来解决, 因而需要反复地运用到平行线和三角形的有关知识,这也体现一种转化思想.
三、单元学习与作业目标
1.了解多边形和正多边形的有关概念,了解四边形的不稳定性
2.掌握多边形内角和与外角和公式
3.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系.
4.探索并证明平行四边形、矩形、菱形、正方形的性质和判定定理,掌握正方形具有矩形 和菱形的一切性质.
5.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
6.探索并证明三角形中位线定理.
7.了解平面图形的镶嵌的含义, 知道哪些平面图形可以镶嵌, 镶嵌的理由及简单的镶嵌设计.
四、课时作业
第八课时(19.3.3 菱形的性质和判定(1))
作业 1(基础达标作业)
作业内容
(1)菱形具有而矩形不一定具有的性质是( )
A.对边平行且相等 B.每一条对角线所在的直线都是它的对称轴
C.内角和等于外角和 D.对角线互相平分
(2)如图,在菱形中,,,点是上不与点和点重合的一个动点,过点分别做和的垂线,垂足为,则的值为( )
A. B.2 C. D.4
(3)若菱形的面积为216,其中一条对角线的长为24,则该菱形的周长为( )
A.36 B.24 C.48 D.60
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题主要考查菱形与矩形的性质,菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角;矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分;由此逐项判断即可得出答案,熟练掌握并区分矩形和菱形的性质是解题的关键.
第(2)小题主要考查菱形的性质,勾股定理,旨在培养学生综合应用知识和分析问题的能力。
第(3)小题主要考查了菱形的性质,勾股定理,根据菱形面积等于对角线乘积的一半求出另一条对角线的长,再根据菱形对角线互相垂直平分得解,有利于培养学生读图识图能力。
作业 2(素养提升作业)
1.作业内容
(1)如图,四边形是菱形,是两条对角线的交点,过点的三条直线将菱形分成阴影和空白部分,若菱形的两条对角线分别为3和6,则阴影部分的面积为 .
(2)菱形的周长为,一条对角线长是,则菱形较小的内角为 度.
(3)如图,在菱形中,点分别在边上,.求证:.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题考查了中心对称,菱形的性质,根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.
第(2)小题主要考查了菱形的性质及等边三角形的判定和性质的综合运用,先根据菱形的性质求出菱形的边长,然后根据对角线长,可判断出菱形一个角的度数,继而可求得该菱形较大的内角度数.
第(3)小题主要考查菱形的性质及全等三角形的性质与判定,熟练掌握菱形的性质及全等三角形的性质与判定是解题的关键。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 四边形
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 19.1.1《多边形内角和》(1) 19.1多边形内角和
2 19.1.1《多边形内角和》(2) 19.1多边形内角和
3 19.2.1《平行四边形的判定》 19.2平行四边形
4 19.2.2《平行四边形的性质》(1) 19.2平行四边形
5 19.2.2《平行四边形的性质》(2) 19.2平行四边形
6 19.3.1 矩形的性质和判定(第1课时) 19.3矩形 菱形 正方形
7 19.3.2 矩形的性质和判定(第2课时) 19.3矩形 菱形 正方形
8 19.3.3 菱形的性质和判定(第1课时) 19.3矩形 菱形 正方形
9 19.3.4 菱形的性质和判定(第2课时) 19.3矩形 菱形 正方形
10 19.3.5 正方形的性质和判定 19.3矩形 菱形 正方形
11 19.4 综合与实践 多边形的镶嵌 19.4 综合与实践 多边形的镶嵌
二、单元分析
(一)课标要求
1.理解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;了解四边形的不稳定性。
2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分。探索并证明平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
3.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
内容分析
本单元教材首先从多边形的概念着手, 研究多边形的内角和与外角和, 并介绍了正多边形的概念和四边形的不稳定性.
平行四边形部分: 学生在小学已经学过平行四边形, 教材直接给出平行四边形的概念, 并通过学生自己的观察与思考得出平行四边形的性质; 然后从平移和作图研究平行四边形的判定定理; 最后, 分别从平行四边形在角、边、对角线等方面的特殊性引入矩形、菱形的概念、性质和判定,继而从矩形、菱形的综合特 殊性得出正方形的概念和性质.
综合与实践: 教材通过地砖平铺的图案, 介绍平面镶嵌的概念, 然后引导学生观察利用正多边形平面镶嵌的图案, 总结归纳能够进行平面镶嵌的多边形的性质,最后引导学生利用一种或两种正多边形进行设计创作.
本章的重点是平行四边形的性质和判定,四边形的有关概念以及多边形的内角和与外角和为平行四边形的学习做必要的铺垫.矩形、菱形、正方形都是特殊 的平行四边形, 它们的概念、性质以及判定都是建立在平行四边形的基础之上的. 本章的关键是要求学生掌握平行四边形的概念、性质和判定, 并能熟练地应用这 些知识解决问题.
学情分析
初中平面几何的内容安排是在对几何基本概念形成直观认识的基础上,按照图形的复杂程度先后安排教学内容.沪科版初中数学教材亦是如此, 在学习本单元之前, 学生已经学习过直线(相交线、平行线、角平分 线、线段的垂直平分线等)、三角形(一般三角形、等腰三角形、直角三角形等) 等知识, 之后将要学习圆等知识,“四边形”与这些几何图形在研究对象、研究内容、研究方法方面都具有相似性和一致性. 在本章内容的学习过程中, 常常需要把四边形的问题转化为三角形问题来解决, 因而需要反复地运用到平行线和三角形的有关知识,这也体现一种转化思想.
三、单元学习与作业目标
1.了解多边形和正多边形的有关概念,了解四边形的不稳定性
2.掌握多边形内角和与外角和公式
3.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系.
4.探索并证明平行四边形、矩形、菱形、正方形的性质和判定定理,掌握正方形具有矩形 和菱形的一切性质.
5.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
6.探索并证明三角形中位线定理.
7.了解平面图形的镶嵌的含义, 知道哪些平面图形可以镶嵌, 镶嵌的理由及简单的镶嵌设计.
四、课时作业
第八课时(19.3.3 菱形的性质和判定(1))
作业 1(基础达标作业)
作业内容
(1)菱形具有而矩形不一定具有的性质是( )
A.对边平行且相等 B.每一条对角线所在的直线都是它的对称轴
C.内角和等于外角和 D.对角线互相平分
【答案】B
【分析】本题考查菱形与矩形的性质,菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角;矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分;由此逐项判断即可得出答案,熟练掌握并区分矩形和菱形的性质是解题的关键.
【详解】解:A、对边平行且相等,菱形和矩形都具有的性质,故此选项不符合题意;
B、每一条对角线所在的直线都是它的对称轴,菱形具有而矩形不一定具有的性质,故此选项符合题意;
C、内角和等于外角和,菱形和矩形都具有的性质,故此选项不符合题意;
D、对角线互相平分,菱形和矩形都具有的性质,故此选项不符合题意;
故选:B.
(2)如图,在菱形中,,,点是上不与点和点重合的一个动点,过点分别做和的垂线,垂足为,则的值为( )
A. B.2 C. D.4
【答案】A
【分析】本题考查菱形的性质,勾股定理,连接 交于点,由菱形的性质可知 ,由勾股定理可求出的值 .
【详解】连接 交于点,
四边形是菱形,
∴,
∴,
,,
,
∴,
∴ ,
故选 A .
(3)若菱形的面积为216,其中一条对角线的长为24,则该菱形的周长为( )
A.36 B.24 C.48 D.60
【答案】D
【分析】本题主要考查了菱形的性质,勾股定理,根据菱形面积等于对角线乘积的一半求出另一条对角线的长,再根据菱形对角线互相垂直平分得到,进而利用勾股定理求出,由此根据菱形周长计算公式即可得到答案.
【详解】解:如图所示,在菱形中,对角线交于,且,
∵菱形为216,
∴,
∴,
∵四边形是菱形,
∴,
∴,
∴菱形的周长为,
故选:D.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题主要考查菱形与矩形的性质,菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角;矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分;由此逐项判断即可得出答案,熟练掌握并区分矩形和菱形的性质是解题的关键.
第(2)小题主要考查菱形的性质,勾股定理,旨在培养学生综合应用知识和分析问题的能力。
第(3)小题主要考查了菱形的性质,勾股定理,根据菱形面积等于对角线乘积的一半求出另一条对角线的长,再根据菱形对角线互相垂直平分得解,有利于培养学生读图识图能力。
作业 2(素养提升作业)
1.作业内容
(1)如图,四边形是菱形,是两条对角线的交点,过点的三条直线将菱形分成阴影和空白部分,若菱形的两条对角线分别为3和6,则阴影部分的面积为 .
【答案】4.5//
【分析】本题考查了中心对称,菱形的性质,根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.
【详解】解:标注字母如图所示:
∵O是菱形两条对角线的交点,菱形是中心对称图形,
∴,四边形四边形,四边形四边形,
∴阴影部分的面积.
故答案为:.
(2)菱形的周长为,一条对角线长是,则菱形较小的内角为 度.
【答案】
【分析】本题主要考查了菱形的性质及等边三角形的判定和性质的综合运用,先根据菱形的性质求出菱形的边长,然后根据对角线长为,可判断出菱形一个角的度数,继而可求得该菱形较大的内角度数.
【详解】菱形的周长为,
菱形的边长为:,
一条对角线的长是,
这条对角线跟相邻的两边组成的三角形为等边三角形,
则菱形的较小的内角为,
故答案为:.
(3)如图,在菱形中,点分别在边上,.求证:.
【答案】证明见解析
【分析】本题主要考查菱形的性质及全等三角形的性质与判定,熟练掌握菱形的性质及全等三角形的性质与判定是解题的关键;由题意易得,然后可证,进而问题可求证
【详解】证明:四边形是菱形,
,
在和中,
,
,
.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)小题考查了中心对称,菱形的性质,根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.
第(2)小题主要考查了菱形的性质及等边三角形的判定和性质的综合运用,先根据菱形的性质求出菱形的边长,然后根据对角线长,可判断出菱形一个角的度数,继而可求得该菱形较大的内角度数.
第(3)小题主要考查菱形的性质及全等三角形的性质与判定,熟练掌握菱形的性质及全等三角形的性质与判定是解题的关键。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)