沪科版七下数学10.2平行线的判定 作业设计(1)

文档属性

名称 沪科版七下数学10.2平行线的判定 作业设计(1)
格式 zip
文件大小 1002.7KB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2024-04-28 10:45:14

文档简介

中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 相交线、平行线和平移
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 10.1 相交线(1) 10.1 相交线
2 10.1 相交线(2) 10.1 相交线
3 10.1 相交线(3) 10.1 相交线
4 10.2 平行线的判定(1) 10.2 平行线的判定
5 10.2 平行线的判定(2) 10.2 平行线的判定
6 10.2 平行线的判定(3) 10.2 平行线的判定
7 10.3 平行线的性质 10.3 平行线的性质
8 10.4 平移 10.4 平移
二、单元分析
((一)课标要求
1.理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(或等角)的余角相等、同角(或等角)的补角相等的性质。
2.理解垂线、垂线段等概念,能用三角板或量角器过一点画已知直线的垂线。
3.能用尺规作图:作一条线段的垂直平分线:过一点作已知直线的垂线。
4.掌握基本事实:同一平面内,过一点有且只有一条直线与已知直线垂直。
5.理解点到直线的距离的意义,能度量点到直线的距离。
6.识别同位角、内错角、同旁内角。
7.理解平行线的概念。
8.掌握平行线基本事实I:过直线外一点有且只有一条直线与这条直线平行。
9.掌握平行线基本事实Ⅱ:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
10.探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么这两条直线平行。
11.掌握平行线的性质定理I:两条平行直线被第三条直线所截,同位角相等。*了解定理的证明。
12.探索并证明平行线的性质定理Ⅱ:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。
13.能用三角板和直尺过已知直线外一点画这条直线的平行线。
14.能用尺规作图:过直线外一点作这条直线的平行线。
15.了解平行于同一条直线的两条直线平行。
16通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。
17.认识并欣赏平移在自然界和现实生活中的应用,运用图形的平移进行图案设计。
内容分析
本章内容是初中几何部分真正的“入门级”知识,就学生的知识层次来说,由数到代数式,由代数到几何,是质的飞跃,是几何证明的入门与关键部分,应引起足够的重视.本章从生活或学生的操作体验中引入知识,由实物抽象出几何图形,再用符号语言或文字语言加以表述,让学生体会数学知识产生过程,激发学习兴趣,培养思维能力。
学情分析
从学生的认知规律看:在小学,学生结合生活情境了解平面上两条直线的平行和相交;在七年级上册,学生初步接触简单的平面几何图形,重点研究了线段和角,知道了互余、互补的角,等角的补角( 余角)相等等知识,能将生活中的实物抽象成简单的图形,会画简单图形,初步掌握结合图形思考问题,只会极为简单的说理,而且利用余角和补角的性质来进行说理。
能力的储备:学生初步具有探究问题的能力,积累了一定的数学活动经验,但对于几何知识的准确表达还存在着困难,尤其是由图形语言、文字语言和符号语言的相互转换,还不能做到准确。学生已有一定的学习迁移能力,但在图形的性质学习过程中,不会注重图形之间的联系,对获得正确的几何结论的经验和方法还很缺乏。
从学生的学习习惯、思维规律看:七年级学生大都积极、热情,喜欢数学活动和探究,但注意力有时不能集中;七年级学生大都热衷于口头表达,但有条理的书写表达较为困难。
三、单元学习与作业目标
1.了解邻补角的概念;理解对顶角的概念,能找出图形中的一个角的对顶角;掌握对顶角的性质,会利用对顶角的性质来进行简单的计算和说理。
2.理解垂线、垂线段、平行线等概念,能用三角板或量角器过一点画已知直线的垂线。
3.探索并证明平行线的判定定理和性质定理,并了解定理的证明。
4.通过具体实例认识平移,探索它的基本性质: 一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。
四、课时作业
第四课时(10.2 平行线的判定(1))
作业 1(基础达标作业)
作业内容
(1)已知与是同旁内角.若,则的度数是( )
A. B. C.或 D.不能确定
(2)图中能与构成同位角的个数是(  )
A.4 B.3 C.2 D.1
(3)下列判断错误的是( )
与是同旁内角 B.与是内错角
C.与是同旁内角 D.与是同位角
(4)如图,和是同位角的是( )
A. B.
C. D.
(5)如图所示,不是的同位角的是(  )
A. B. C. D.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)题主要考查学生对同旁内角的理解,熟记定义是解题的关键。
第(2)题考查同位角的定义.根据同位角的定义“两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角”解答即可.
第(3)题主要考查了三线八角.根据同位角、内错角、同旁内角的定义进行解答即可
第(4)题主要考查同位角的判断.根据同位角的定义:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解即可.
第(5)题主要考查同位角,解题的关键是根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角求解.
作业 2(素养提升作业)
1.作业内容
(1)如图所示的四个图形中,和是同位角的是 .(填序号)

(2)如图,的同旁内角是 ,的内错角是 ,的同位角是 .

(3)如图,直线,被直线所截,交,于点,,是一条射线.图中共有多少对同位角?多少对内错角?多少对同旁内角?分别写出这些角.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.
第(2)小题主要涉及到三线八角的知识,熟练掌握同位角、内错角、同旁内角的定义是关键
第(3) 本题考查三线八角的相关知识,有利于加深对同位角、内错角、同旁内角的定义的理解。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
一、单元信息
基本 信息 学科 年级 学期 教材版本 单元名称
数学 七年级 第二学期 沪科版 相交线、平行线和平移
单元 组织方式 自然单元 □重组单元
课时信息 序号 课时名称 对应教材内容
1 10.1 相交线(1) 10.1 相交线
2 10.1 相交线(2) 10.1 相交线
3 10.1 相交线(3) 10.1 相交线
4 10.2 平行线的判定(1) 10.2 平行线的判定
5 10.2 平行线的判定(2) 10.2 平行线的判定
6 10.2 平行线的判定(3) 10.2 平行线的判定
7 10.3 平行线的性质 10.3 平行线的性质
8 10.4 平移 10.4 平移
二、单元分析
(一)课标要求
1.理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(或等角)的余角相等、同角(或等角)的补角相等的性质。
2.理解垂线、垂线段等概念,能用三角板或量角器过一点画已知直线的垂线。
3.能用尺规作图:作一条线段的垂直平分线:过一点作已知直线的垂线。
4.掌握基本事实:同一平面内,过一点有且只有一条直线与已知直线垂直。
5.理解点到直线的距离的意义,能度量点到直线的距离。
6.识别同位角、内错角、同旁内角。
7.理解平行线的概念。
8.掌握平行线基本事实I:过直线外一点有且只有一条直线与这条直线平行。
9.掌握平行线基本事实Ⅱ:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
10.探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么这两条直线平行。
11.掌握平行线的性质定理I:两条平行直线被第三条直线所截,同位角相等。*了解定理的证明。
12.探索并证明平行线的性质定理Ⅱ:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。
13.能用三角板和直尺过已知直线外一点画这条直线的平行线。
14.能用尺规作图:过直线外一点作这条直线的平行线。
15.了解平行于同一条直线的两条直线平行。
16通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。
17.认识并欣赏平移在自然界和现实生活中的应用,运用图形的平移进行图案设计。
内容分析
本章内容是初中几何部分真正的“入门级”知识,就学生的知识层次来说,由数到代数式,由代数到几何,是质的飞跃,是几何证明的入门与关键部分,应引起足够的重视.本章从生活或学生的操作体验中引入知识,由实物抽象出几何图形,再用符号语言或文字语言加以表述,让学生体会数学知识产生过程,激发学习兴趣,培养思维能力。
学情分析
从学生的认知规律看:在小学,学生结合生活情境了解平面上两条直线的平行和相交;在七年级上册,学生初步接触简单的平面几何图形,重点研究了线段和角,知道了互余、互补的角,等角的补角( 余角)相等等知识,能将生活中的实物抽象成简单的图形,会画简单图形,初步掌握结合图形思考问题,只会极为简单的说理,而且利用余角和补角的性质来进行说理。
能力的储备:学生初步具有探究问题的能力,积累了一定的数学活动经验,但对于几何知识的准确表达还存在着困难,尤其是由图形语言、文字语言和符号语言的相互转换,还不能做到准确。学生已有一定的学习迁移能力,但在图形的性质学习过程中,不会注重图形之间的联系,对获得正确的几何结论的经验和方法还很缺乏。
从学生的学习习惯、思维规律看:七年级学生大都积极、热情,喜欢数学活动和探究,但注意力有时不能集中;七年级学生大都热衷于口头表达,但有条理的书写表达较为困难。
三、单元学习与作业目标
1.了解邻补角的概念;理解对顶角的概念,能找出图形中的一个角的对顶角;掌握对顶角的性质,会利用对顶角的性质来进行简单的计算和说理。
2.理解垂线、垂线段、平行线等概念,能用三角板或量角器过一点画已知直线的垂线。
3.探索并证明平行线的判定定理和性质定理,并了解定理的证明。
4.通过具体实例认识平移,探索它的基本性质: 一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。
四、课时作业
第四课时(10.2 平行线的判定(1))
作业 1(基础达标作业)
作业内容
(1)已知与是同旁内角.若,则的度数是( )
A. B. C.或 D.不能确定
【答案】D
(2)图中能与构成同位角的个数是(  )
A.4 B.3 C.2 D.1
【答案】B
【分析】本题考查同位角的定义.根据同位角的定义“两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角”解答即可.
【详解】解:如图:
由同位角的定义知,能与构成同位角的角有,共3个,
故选:B.
(3)下列判断错误的是( )
与是同旁内角 B.与是内错角
C.与是同旁内角 D.与是同位角
【答案】C
【分析】此题主要考查了三线八角.根据同位角、内错角、同旁内角的定义进行解答即可.
【详解】解:A、与是同旁内角,说法正确;
B、与是内错角,说法正确;
C、与不是两条直线被第三条直线截成的角,说法错误;
D、与是同位角,说法正确.
故选:C.
(4)如图,和是同位角的是( )
A. B.
C. D.
【答案】A
【分析】本题考查了同位角的判断.根据同位角的定义:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解即可.
【详解】解:由同位角的定义可知选项A符合题意,
故选:A.
(5)如图所示,不是的同位角的是(  )
A. B. C. D.
【答案】B
【分析】此题考查了同位角,解题的关键是根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角求解.
【详解】解:根据同位角的定义,由图可知,
∠1的同位角有:,,,
故不是∠1的同位角,
故选:B.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)题主要考查学生对同旁内角的理解,熟记定义是解题的关键。
第(2)题考查同位角的定义.根据同位角的定义“两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角”解答即可.
第(3)题主要考查了三线八角.根据同位角、内错角、同旁内角的定义进行解答即可
第(4)题主要考查同位角的判断.根据同位角的定义:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解即可.
第(5)题主要考查同位角,解题的关键是根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角求解.
作业 2(素养提升作业)
1.作业内容
(1)如图所示的四个图形中,和是同位角的是 .(填序号)

【答案】①②④
【分析】根据同位角的定义,逐一判断选项,即可得到答案.
【详解】解:①∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角;
②∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角;
③∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角;
④∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角.
故答案为:①②④.
(2)如图,的同旁内角是 ,的内错角是 ,的同位角是 .

【答案】
【分析】两直线被第三条直线所截,同位角位于两直线同侧,第三条直线的同旁;内错角位于两直线之间,第三条直线的两侧;同旁内角位于两直线之间,第三条直线的同侧.
【详解】解:由图可得:的同旁内角是;
的内错角是;
的同位角是,
故答案为:;;.
(3)如图,直线,被直线所截,交,于点,,是一条射线.图中共有多少对同位角?多少对内错角?多少对同旁内角?分别写出这些角.
【答案】见解析
【详解】解:共有6对同位角:与,与,与,与,与,与.
共有3对内错角:与,与,与.
共有3对同旁内角:与,与,与.
2.时间要求(10 分钟)
3.评价设计
作业评价表
评价指标 等级 备 注
A B C
答题的准确性 A 等,答案正确、过程正确。 B 等,答案正确、过程有问题。 C 等,答案不正确,有过程不完整;答案不准确,过程错误、或无过程。
答题的规范性 A 等,过程规范,答案正确。 B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。
解法的创新性 A 等,解法有新意和独到之处,答案正确。 B 等,解法思路有创新,答案不完整或错误。 C 等,常规解法,思路不清楚,过程复杂或无过程。
综合评价等级 AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评价为 B 等;其余情况综合评价为 C 等。
作业分析与设计意图
第(1)题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.
第(2)小题主要涉及到三线八角的知识,熟练掌握同位角、内错角、同旁内角的定义是关键
第(3) 本题考查三线八角的相关知识,有利于加深对同位角、内错角、同旁内角的定义的理解。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)