8.3 实际问题与二元一次方程组(1) 同步练习
人教版数学 七年级下册
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.七年级一班相约周末去游乐园划船,若每条船乘7人,则有7人无船可乘;若每条船乘9人,则空出一条船.设该游乐园有条船,一班共有人,则下列方程组中正确的是( )
A. B. C. D.
2.某学校为进一步开展好劳动教育实践活动,用1580元购进A,B两种劳动工具共145件,A,B两种劳动工具每件分别为10元,12元.设购买A,B两种劳动工具的件数分别为x,y,那么下面列出的方程组中正确的是( )
A. B.
C. D.
3.一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )
A. B.
C. D.
4.某药店以同样的价格卖出同样的口罩和酒精,以下是4天的记录:第1天,卖出13包口罩和7瓶酒精,收入222元;第2天,卖出18包口罩和11瓶酒精,收入327元;第3天,卖出7包口罩和11瓶酒精,收入228元;第4天,卖出23包口罩和20瓶酒精,收入468元,聪明的小方发现这四天中有一天的记录有误,其中记录有误的是( )
A.第1天 B.第2天 C.第3天 D.第4天
5.“洛书”是世界上最古老的一个三阶幻方,它有3行3列,三横行的三个数之和,三竖列的三个数之和,两对角线的三个数之和都相等,其实幻方就是把一些有规律的数填在正方形图内,使每一行、每一列和每一条对角线上各个数之和都相等,如图幻方a、b的值分别是( )
A.11,9 B.9,11 C.8,13 D.13,8
二、填空题
6.一家四口人的年龄加在一起是100岁,弟弟比姐姐小8岁,父亲比母亲大2岁,十年前他们全家人年龄的和是65岁,则父亲今年的年龄为 岁.
7.某班级为筹备运动会,准备用350元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 种购买方案.
8.在当地农业技术部门的指导下,小明家种植的大棚油桃喜获丰收,去年大棚油桃的利润(利润=收入-支出)为12000元,今年大棚油桃的收入比去年增加了20%,支出减少了10%,预计今年的利润比去年多11400元,设小明家去年种植大棚油桃的收入为x元,支出是y元.依题意列方程组 .
9.已知一个两位数,它的十位上的数字与个位上的数字之和为15,若对调个位与十位上的数字,得到的新数比原数小27,求这个两位数,设十位上的数字为x,个位上的数字为y,所列方程组(不用化简)为 .
10.小慧带着妈妈给的现金去蛋糕店买蛋糕.他若买5个巧克力蛋糕和3个桂圆蛋糕,则妈妈给的钱不够,还缺16元;若买3个巧克力蛋糕和5个桂圆蛋糕,则妈妈给的钱还有剩余,还多10元.若他只买8个桂圆蛋糕,则剩余的钱为 元.
11.用白铁皮制作罐头盒,每张铁皮可制作盒身16个或者盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用 张制作盒身, 张制作盒底,能使盒身和盒底恰好配套.
三、解答题
12.某商场第一次购进20件A商品,40件B商品,共用了1980元.脱销后,在进价不变的情况下,第二次购进40件A商品,20件B商品,共用了1560元.商品A的售价为每件30元,商品B的售价为每件60元.
(1)求A,B两种商品每件的进价分别是多少元?
(2)为了满足市场需求,需购进A,B两种商品共1000件,且A种商品的数量不少于B种商品数量的3倍,请你设计进货方案,使这1000件商品售完后,商场获利最大,并求出最大利润.
13.一个三位数是一个两位数的5倍,如果把这三位数放在两位数的左边,得到一个五位数;如果把这三位数放在两位数的右边,得到另一个五位数,而后面的五位数比前面的五位数大18648,问:原两位数、三位数各是多少?
14.某校准备组织师生共300人参加一项公益活动,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A型车3辆,B型车3辆,则空余15个座位;如果租用A型车5辆,B型车1辆,则有15个人没座位.
(1)求A,B两种车型各有多少个座位.
(2)若最终租用了两种车型的车,且座位恰好坐满,则两种车型的车各租用了多少辆?
15.某商店分两次购进A,B型两种台灯进行销售,两次购进的数量及费用如下表所示,由于物价上涨,第二次购进A,B型两种台灯时,两种台灯每台进价分别上涨,.
购进的台数 购进所需要的费用(元)
A型 B型
第一次 10 20 3000
第二次 15 10 4500
(1)求第一次购进A,B型两种台灯每台进价分别是多少元?
(2)A,B型两种台灯销售单价不变,第一次购进的台灯全部售出后,获得的利润为2800元,第二次购进的台灯全部售出后,获得的利润为1800元.求A,B型两种台灯每台售价分别是多少元?
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.A
【分析】设该游乐园有x条船,一班共有y人,由“若每条船乘7人,则有7人无船可乘”得到方程7x+7= y;由“若每条船乘9人,则空出一条船”得到方程9(x- 1)= y,联立组成方程组即可解答.
【详解】解:设该游乐园有条船,一班共有人,
根据题意得:;
故选:A.
【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
2.A
【分析】设购买A,B两种劳动工具的件数分别为x,y,根据“用1580元购进A,B两种劳动工具共145件,A,B两种劳动工具每件分别为10元,12元.”列出方程组,即可求解.
【详解】解:设购买A,B两种劳动工具的件数分别为x,y,根据题意得:
.
故选:A
【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
3.D
【分析】先表示出颠倒前后的两位数,然后根据十位上的数字y比个位上的数字x大1,若颠倒个位与十位数字的位置,得到新数比原数小9,列方程组即可.
【详解】解:根据十位上的数字y比个位上的数字x大1,得方程y=x+1;
根据对调个位与十位上的数字,得到的新数比原数小9,得方程10y+x=10x+y+9.
列方程组为
故选D.
【点睛】y本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解
4.D
【分析】设口罩的单价为x元,酒精的单价为y元,假设第1天、第2天的记录无误,根据题意列二元一次方程组求解,再分别计算第3天和第4天的收入,比较即可得到答案.
【详解】解:设口罩的单价为x元,酒精的单价为y元,
若第1天、第2天的记录无误时,依题意得:,
解得:,
第3天收入元,符合记录,
第4天收入元,不符合记录,
第4天的记录有误,
故选:D.
【点睛】本题主要考查了二元一次方程组的实际应用,有理数的混合运算,根据题意正确列方程组是解题关键.
5.D
【分析】本题是一道有关探究规律的题目,侧重考查知识点的应用能力,依题意,得,再解二元一次方程组即可.
【详解】解:依题意,得,
解得:,
故选:D.
6.42
【分析】由题意得:弟弟今年的年龄为5岁,姐姐今年的年龄为13岁,设母亲今年的年龄为x岁,父亲今年的年龄为y岁,再由题意:一家四口人的年龄加在一起是100岁,父亲比母亲大2岁,列出方程组,解方程组即可.
【详解】解:现在一家四口人的年龄之和应该比十年前全家人年龄之和多40岁,
但实际上100-65=35(岁),说明十年前弟弟没出生,
则弟弟的年龄为10-(40-35)=5(岁),姐姐的年龄为5+8=13(岁),
设母亲今年的年龄为x岁,父亲今年的年龄为y岁,
由题意得:,
解得:,
即父亲今年的年龄为42岁,
故答案为:42.
【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
7.两
【分析】本题考查二元一次方程的应用.设甲种运动服买了x套,乙种买了y套,根据准备用350元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y为正整数可求出解.
【详解】解:设甲种运动服买了x套,乙种买了y套,
,
得,
∵x,y必须为正整数,
∴,即,
∴当时,;当时,;
所以有两种方案.
故答案为:两.
8.
【分析】审题,明确等量关系,建立方程组.
【详解】解:由题意知,今年收入为,今年支出,故
故答案为:
【点睛】本题考查二元一次方程组的应用,根据题意明确等量关系是解题的关键.
9.
【分析】本题考查二元一次方程组的应用,由“十位上的数字与个位上的数字之和为15”可得,这个两位数表示为,对调个位与十位上的数字表示为,根据“得到的新数比原数小27”可得方程“”,组成方程组即可.
【详解】解:根据“它的十位上的数字与个位上的数字之和为15,若对调个位与十位上的数字,得到的新数比原数小27”,
可得:
故答案为:.
10.49
【分析】设买一个巧克力x元,买一个蛋糕y元,根据已知条件可得到他妈妈给小慧的钱为5x+3y-16和3x+5y+10,由此建立关于x,y的方程,求出x-y的值,然后求出他买8个桂圆蛋糕的剩余的钱为5x+3y-16-8y,将其整理可求出结果.
【详解】解:设买一个巧克力x元,买一个蛋糕y元,
∵他若买5个巧克力蛋糕和3个桂圆蛋糕,则妈妈给的钱不够,还缺16元,
∴他妈妈给小慧的钱为5x+3y-16;
∵ 若买3个巧克力蛋糕和5个桂圆蛋糕,则妈妈给的钱还有剩余,还多10元 ,
∴3x+5y+10
∴5x+3y-16=3x+5y+10,
解之:x-y=13.
他买8个桂圆蛋糕的钱为8y,
他剩余的钱为5x+3y-16-8y=5x-5y-16=5(x-y)-16=5×13-16=49元.
故答案为:49.
【点睛】本题考查了二元一次方程的应用,以及整式的加减,根据题意找出等量关系是解决本题的关键.
11. 20 16
【分析】根据题意可知,本题中的相等关系是(1)盒身的个数盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数,列方程组求解即可.
【详解】解:设用x张制作盒身,y张制作盒底,
根据题意,得,
解得,
故答案为:20,16.
【点睛】本题考查了二元一次方程组的应用,解题的关键是正确分析题目中的等量关系.
12.(1)A种商品每件的进价为19元,B种商品每件的进价为40元;(2)当购进A种商品750件、B种商品250件时,销售利润最大,最大利润为13250元.
【分析】(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.
【详解】(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,
根据题意得:,
解得:.
答:A种商品每件的进价为19元,B种商品每件的进价为40元;
(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,
根据题意得:w=(30﹣19)(1000﹣m)+(60﹣40)m=9m+11000.
∵A种商品的数量不少于B种商品数量的3倍,
∴,
解得:,
∵在w=9m+11000中,k=9>0,
∴w的值随m的增大而增大,
∴当m=250时,w取最大值,最大值为9×250+11000=13250,
∴当购进A种商品750件、B种商品250件时,销售利润最大,最大利润为13250元.
【点睛】本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出与之间的函数关系式.
13.原两位数是37;三位数是185.
【分析】设两位数是x,三位数是y.根据一个三位数是一个两位数的5倍,得方程y=5x;根据把这个三位数放在两位数的左边,得到一个五位数,即100y+x,根据把这个三位数放在两位数的右边,得到另一个五位数,即1000x+y,再根据后面的五位数比前面的五位数大18648,列方程1000x+y-(100y+x)=18648.联立解方程组即可.
【详解】解:设两位数是x,三位数是y.
根据题意,得
解,得
答:两位数、三位数各是37、185.
【点睛】本题考查二元一次方程组的应用,解题关键是掌握数的表示方法,把三位数放在两位数的左边,相当于把三位数扩大了100倍,把三位数放在两位数的右边,相当于把两位数扩大了1000倍.
14.(1)每个A型车有45个座位,B型车有60个座位
(2)需租用A型车4辆,B型车2辆
【分析】本题主要考查了二元一次方程(组)的应用,解题的关键是根据题意找出等量关系.
(1)设该公司,两种车型各、个座位,根据题意得:,即可求解;
(2)设需租A型车m辆,B型车n辆,可得,再利用正整数解的含义可得答案.
【详解】(1)解:设每个A型车有x个座位,B型车有y个座位,
依题意,得:,
解得:.
答:每个A型车有45个座位,B型车有60个座位.
(2)设需租A型车m辆,B型车n辆,
依题意,得:,
∴.
∵m,n均为正整数,
∴.
答:需租用A型车4辆,B型车2辆.
15.(1)第一次购进A型台灯每台进价为200元,B型台灯每台进价为50元;
(2)A型台灯每台售价为340元,B型台灯每台售价为120元
【分析】本题主要考查了二元一次方程组的实际应用:
(1)根据等量关系式:第一次购买台A型台灯的费用第一次购买台B型台灯的费用元,第二次购买台A型台灯的费用第二次购买台B型台灯的费用元,列出方程组,接可求解;
(2)根据等量关系式:第一次的台A型台灯的利润第一次的台B型台灯的利润元,第二次的台A型台灯的利润第二次购买台B型台灯的利润元,列出方程组,接可求解.
【详解】(1)解:设第一次购进A型台灯每台进价为x元,B型台灯每台进价为y元,
由题意得:,
解得:,
答:第一次购进A型台灯每台进价为200元,B型台灯每台进价为50元.
(2)解:设A型台灯每台售价为m元,B型台灯每台售价为n元,
由题意得:,
解得,,
答:A型台灯每台售价为340元,B型台灯每台售价为120元.
答案第1页,共2页
答案第1页,共2页