1.3有理数的加减法(1)
学习目标:1、探索有理数加法法则,理解有理数的加法法则;
2、能运用有理数加法法则,正确进行有理数加法运算;
3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.
学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定.
课堂活动:
有理数加法的探索
1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?
(1)向东行驶5千米后,又向东行驶2千米,
(2)向西行驶5千米后,又向西行驶2千米,
(3)向东行驶5千米后,又向西行驶2千米,
(4)向西行驶5千米后,又向东行驶2千米,
(5)向东行驶5千米后,又向西行驶5千米,
(6)向西行驶5千米后,静止不动,
2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,
输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?
议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:
赢球数 净胜球 算式
主场 客场
3 ‐2
‐3 2
3 2
‐3 ‐2
3 0
0 ‐3
你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.
二、有理数加法的归纳
探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?
说一说:两个有理数相加有多少种不同的情形?
议一议:在各种情形下,如何进行有理数的加法运算?
归纳:有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加.
②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
③一个数与0相加,仍得这个数.
三、实践应用
问题1.计算
(1)(+8)+(+5) (2)(-8)+(-5) (3)(+8)+(-5)
(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0;
问题2.某公司三年的盈利情况如下表所示,规定盈利为“+”(单位:万元)
第一年 第二年 第三年
-24 +15.6 +42
该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元?
问题3.判断(1)两个有理数相加,和一定比加数大. ( )
(2)绝对值相等的两个数的和为0.( )
(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( )
四、课堂反馈:
1.一个正数与一个负数的和是( ( http: / / www.21cnjy.com ) )
A、正数 B、负数 C、零 D、以上三种情况都有可能
2.两个有理数的和( )
A、一定大于其中的一个加数 B、一定小于其中的一个加数
C、大小由两个加数符号决定 D、大小由两个加数的符号及绝对值而决定
3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0
(4)43+(-34) (5)(-10.5)+(+1.3) (6)(-)+
知识巩固
一、选择题
1.若两数的和为负数,则这两个数一定( )
A.两数同负 B.两数一正一负 C.两数中一个为0 D.以上情况都有可能
2.两个有理数相加,若它们的和小于每一个加数,则这两个数( )
A.都是正数 B.都是负数 C.互为相反数 D.符号不同
3.如果两个有理数的和是正数,那么这两个数( )
A.都是正数 B.都是负数 C.都是非负数 D.至少有一个正数
4.使等式成立的有理数是 ( )
A.任意一个整数 B.任意一个非负数 C.任意一个非正数 D.任意一个有理数
5.对于任意的两个有理数,下列结论中成立的是 ( )
A.若则 B.若则
C.若则 D.若则
6.下列说法正确的是 ( )
A.两数之和大于每一个加数 B.两数之和一定大于两数绝对值的和
C.两数之和一定小于两数绝对值的和 D.两数之和一定不大于两数绝对值的和
二、判断
1.若某数比-5大3,则这个数的绝对值为3.( )
2.若a>0,b<0,则a+b>0.( )
3.若a+b<0,则a,b两数可能有一个正数.( )
4.若x+y=0,则︱x︱=︱y︱.( )
5.有理数中所有的奇数之和大于0.( )
三、填空
1.(+5)+(+7)=_______; (-3)+(-8)=________;
(+3)+(-8)=________; (-3)+(-15)=________;
0+(-5)=________; (-7)+(+7)=________.
2.一个数为-5,另一个数比它的相反数大4,这两数的和为________.
3.(-5)+______=-8; ______+(+4)=-9.
_______+(+2)=+11; ______+(+2)=-11;
5. 如果则 ,
四、计算
(1)(+21)+(-31) (2)(-3.125)+(+3) (3)(-)+(+)
(4)(-3)+0.3 (5)(-22 )+0 (6)│-7│+│-9│
五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?
六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?
七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。
八、 已知
(1)求 (2)若又有,求.
1.3有理数的加减法(2)
学习目标:
1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性;
2.能运用加法运算律简化加法运算;
3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用.
学习难点:运用有理数加法法则简化运算.
课堂活动
有理数加法运算律的探索
1.试一试:
(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:
□+○ 和 ○+□
(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:
(□+○)+◇ 和 □+(○+◇)
2.你能发现什么?请说说自己的猜想.
3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.
加法的交换律:文字概括: 字母表示
加法的结合律:文字概括: 字母表示
二、有理数加法运算律的应用
问题1.计算
(1) (-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6
(3) (4)(+4.56)+(-3.45)+(+4.44)+(+2.45)
问题2:计算 (1) (-11)+8+(-14) (2)
(3) 0.35+(-0.6)+0.25+(-5.4) (4)
三、拓展延伸
问题3.10筐苹果,以每筐30千克为准,超 ( http: / / www.21cnjy.com )过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5.
问(1)10筐苹果共超过(不足)多少千克?
(2)10筐苹果共重多少千克?
课堂反馈:1.从某点O出发 ( http: / / www.21cnjy.com ),在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O
2.10名学生的某一次数学考试成绩如下(单位:分)87,91,94,88,93,91,89,87,92,86,你能迅速算出总成绩之和吗?
知识巩固
填空
1. 存折中有存款240元,取出125元,又存入100元,存折中还有 元.
2.绝对值小于5的所有负整数的和为
3.已知是最小的正整数,是的相反数,的绝对值为3,则++=
4.某天股票A的开盘价是18元,上午11:30跌1.5元,下午收盘时又涨0.3元,则股票A这天的收盘价是 元.
5.如果a<0,则︱a︱+a=
二、计算
(1) (2)(-9)+4+(-5)+8;
(3)(-36.35)+(-7.25)+26.35+(+7) (4)
(5) (6)(-)+(+)+(+)+(-1)
三、解答题
1. 一天早晨的气温是-7 C,中午上升了11 C,半夜又降了9 C,则半夜的气温是多少
2.仓库内原存某种原料4500千克,一周内存入和领出情况如下(存入为正,单位:千克):
1500,-300,-670,400,-1700,-200,-250.问:第7天末仓库内还存有这种原料多少千克?
3. 某种袋装奶粉标明净含量为400g,检查其中8袋,记录如下表:
编号 1 2 3 4 5 6 7 8
差值/g -4.5 +5 0 +5 0 0 +2 -5
请问这8袋被检奶粉的总净含量是多少?
4.一只电子跳骚从数轴上的原点出发,第 ( http: / / www.21cnjy.com )一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?
5. 某出租车沿公路左右行驶,向左为正,向右为负,某天从A地出发后到收工回家所走的路线如下:(单位:千米)
⑴ 问收工时离出发点A多少千米?
⑵ 若该出租车每千米耗油0.3升,问从A地出发到收工共耗油多少升?
6.已知的相反数为-5,试求++(-)
7.计算:|1-|+|-|+|-|+…+|-|
课后反思:
学习小结:
课后作业:
1.3有理数的加减法(3)
学习目标:
1.理解有理数减法法则, 能熟练进行减法运算.
2.会将减法转化为加法,进行加减混合运算,体会化归思想.
学习难点
有理数的减法法则的理解,将有理数减法运算转化为加法运算.
自主学习:
一、情境引入:
1.昨天,国际频道的天气预报报道, ( http: / / www.21cnjy.com )南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)
2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?
探索新知:
(一) 有理数的减法法则的探索
1.我们不妨看一个简单的问题: (-8)-(-3)=?
也就是求一个数“?”,使 (?)+(-3)=-8
根据有理数加法运算,有 (-5)+(-3)= -8
所以 (-8)-(-3)= -5 ①
2.这样做减法太繁了,让我们再想一想有其他方法吗?
试一试
做一个填空:(-8)+( )= -5
容易得到 (-8)+(+3 )= -5 ②
思考: 比较 ①、②两式,我们有什么发现吗?
3.验证:
(1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?
3-(-5)=3+ ;
(2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?
(-3)-(-5)=(-3)+ ;
(2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?
(-3)-5=(-3)+ ;
(二)有理数的减法法则归纳
1.说一说:两个有理数减法有多少种不同的情形?
2.议一议:在各种情形下,如何进行有理数的减法计算?
3.试一试:你能归纳出有理数的减法法则吗?
由此可推出如下有理数减法法则:
减去一个数,等于加上这个数的相反数。
字母表示:
由此可见,有理数的减法运算可以转化为加法运算。
【思考】:两个有理数相减,差一定比被减数小吗?
说明:(1)被减数可以小于减数。如: 1-5 ;
(2)差可以大于被减数,如:(+3)-(-2) ;
(3)有理数相减,差仍为有理数;
(4)大数减去小数,差为正数;小数减大数,差为负数;
(三 )问题:
问题1. 计算:
①15-(-7) ②(-8.5)-(-1.5) ③ 0-(-22)
④(+2)-(+8) ⑤(-4)-16 ⑥
问题2.(1)-13.75比少多少? (2)从-1中减去-与-的和,差是多少?
(四)课堂反馈:
1.课本P 32 1、2、3、4
2. 求出数轴上两点之间的距离:
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的点;
(3)表示数-1的点与表示数-6的点。
归纳总结:
1.有理数减法法则
2.有理数减法运算实质是一个转化过程
【知识巩固】
1.下列说法中正确的是( )
A减去一个数,等于加上这个数. B零减去一个数,仍得这个数.
C两个相反数相减是零. D在有理数减法中,被减数不一定比减数或差大.
2.下列说法中正确的是( )
A两数之差一定小于被减数.
B减去一个负数,差一定大于被减数.
C减去一个正数,差不一定小于被减数.
D零减去任何数,差都是负数.
3.若两个数的差不为0的是正数,则一定是( )
A被减数与减数均为正数,且被减数大于减数.
B被减数与减数均为负数,且减数的绝对值大.
C被减数为正数,减数为负数.
4.下列计算中正确的是( )
A(—3)-(—3)= —6 B 0-(—5)=5
C(—10)-(+7)= —3 D | 6-4 |= —(6-4)
5.(1)(—2)+________=5; (—5)-________=2.
(2)0-4-(—5)-(—6)=___________.
(3)月球表面的温度中午是1010C,半夜是-153oC,则中午的温度比半夜高____.
(4)已知一个数加—3.6和为—0.36,则这个数为_____________.
(5)已知b < 0,则a,a-b,a+b从大到小排列________________.
(6)0减去a的相反数的差为_______________.
(7)已知| a |=3,| b |=4,且a6.计算
(1) (—2)-(—5) (2)(—9.8)-(+6)
(3) 4.8-(—2.7) (4)(—0.5)-(+)
(5)(—6)-(—6) (6)(3-9)-(21-3)
(7)| —1-(—2)| -(—1)
(8)(—3)-(—1)-(—1.75)-(—2)
7.已知a = 8,b = -5,c = -3,求下列各式的值:
(1)a-b-c; (2)a-(c+b)
8.若a<0 , b>0, 则a, a+b, a-b, b中最大的是( )
A. a B. a+b C. a-b D. b
9.请你编写符合算式(-20)-8的实际生活问题。
1.3有理数的加减法(4)
学习目标: 1、能把有理数的加、减法混合运算的算式写成几个有理数的和式,并能正确地进行有理数加减混合运算。
2、能体会数学中的转化思想。
学习难点 :有理数加减法的混合运算及其应用。
教学过程
一、情境引入
1.有理数的加法法则,有理数的减法法则。
2.一架飞机做特技表演,它起飞后的 ( http: / / www.21cnjy.com )高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?
3.(-8)-(-10)+(-6)-(+4),
这是有理数的加减混合运算题,你会做吗?请同学们思考练习。
根据有理数减法法则,有理数的加减混合运算可以统一为
二、探索新知
1.加法、减法统一成加法
由于减法可以改写成加法进行运算,因此所有加法、减法的运算在有理数范围内都可以统一成加法运算。如:
(-12)+(-5)-(-8)-(+9)可以改写成 (-12)+(-5)+(+8)+(-9)
做一做:(1) (-9)-(+5)-(-15)-(+9)
(2) 2+5-8
(3) 14-(-12)+(-25)-17
2.有理数加法运算中,加号可以省略
如: 12+(-8)=12-8; (-12)+(-8)=(-12)-(+8)=(-12)-8
(-9)+(-5)+(+15)+(-20)= -9-5+15-20
练一练:将(-15)-(+63)-(-35)-(+24)+(-12)先统一成加法,再省略加号。
3.加、减混合运算中“+”“—”号的理解
(1)可以看作是运算符号(第一个数除外)
如:-5-3+8-7可读作负5减去3加上8减去7
(2)可以看作是一个数的本身的符号
如:-5-3+8-7可以看作是(-5)+(-3)+(+8)+(-7),可读作负5、负3、正8、负7的和
4.省略加号的加法算式的运算
练一练: (1)-3-5+4
(2)-26+43-24+13-46
三、 问题
问题1.计算
(1)(-4)+9-(-7)-13
(2)11-39.5+10-2.5-4+19
(3)
练习:课本练一练; 4、5
问题2.寻道员沿东西方向的铁路进行巡视维护。 ( http: / / www.21cnjy.com )他从住地出发,先向东行走了7km,休息之后继续向东行走了3km;然后折返向西行走了11.5km,此时他在住地的什么方向?与住地的距离是多少?
课堂反馈:在抗洪抢险中,人 ( http: / / www.21cnjy.com )民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A处出发,晚上到达B处,记向东方向为正方向,当天航行路程记录如下:(单位:千米) 14,-9,+8,-7,13,-6,+10,-5
B在A何处?
若冲锋舟每千米耗油0.5升,油箱容量为29升,球途中还需补充多少升油?
四、归纳总结
1.有理数加减法统一成加法运算。
2.解题时要注意解题技巧的应用。
【知识巩固】
1.判断题
(1)运用加法交换律,得-7+3=-3+7. ( )
(2)-5-4=-9.( ) -5-4=-1.( )
(3)两个数相加,和一定大于任一个加数. ( )
(4)两数差一定小于被减数. ( )
(5)零减去一个数,仍得这个数. ( )
2.选择题
(1)把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是 ( )
A.-5-3+1-5 B.5-3-1-5
C.5+3+1-5 D.5-3+1-5
(2)算式8-7+3-6正确的读法是 ( )
A.8、7、3、6的和 B.正8、负7、正3、负6的和
C.8减7加正3、减负6 D.8减7加3减6的和
(3)两个数相加,其和小于每个加数,那么这两个数( )
A.同为负数 B.异号 C.同为正数 D.零或负数
(4)甲数减去乙数的差与甲数比较,必为( )
A.差一定小于甲数 B.差不能大于甲数
C.差一定大于甲数 D.差的大小取决于乙是什么样的数
3.把下列各式写成省略括号的和的形式
(1)(-28)-(+12)-(-3)-(+6)
(2)(-25)+(-7)-(-15)-(-6)+(-11)-(-2)
4.计算下列各题
(1)(+17)-(-32)-(+23) (2)(+6)-(+12)+(+8.3)-(+7.4)
(3)1.2-2.5-3.6+4.5 (4)-7+6+9-8-5;
(5)73-(8-9+2-5)
(6)-16+25+16-15+4-10 (7)-5.4+0.2-0.6+0.8
5.有十箱梨,每箱质量如 ( http: / / www.21cnjy.com )下:(单位:千克)51,53,46,49,52,45,47,50,53,48。你能较快地算出它们的总质量吗?列式计算。
6 若,,且求a-b+c的值。