本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
§4 正弦函数和余弦函数的定义域诱导公式
---余弦函数
1、 教学目标:
1、 知识与技能
(1)了解任意角的余弦函数概念;(2)理解余弦函数的几何意义;(3)掌握余弦函数的诱导公式;(4)能利用五点作图法作出余弦函数在[0,2π]上的图像;(5)熟练根据余弦函数的图像推导出余弦函数的性质;(6)能区别正、余弦函数之间的关系;(7)掌握利用数形结合思想分析问题、解决问题的技能。
2、 过程与方法
类比正弦函数的概念,引入余弦函数的概念;在正、余弦函数定义的基础上,将三角函数定义推广到更加一般的情况;让学生通过类比,联系正弦函数的诱导公式,自主探究出余弦函数的诱导公式;能学以致用,尝试用五点作图法作出余弦函数的图像,并能结合图像分析得到余弦函数的性质。
3、 情感态度与价值观
使同学们对余弦函数的概念有更深的体会;会用联系的观点看问题,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
二、教学重、难点
重点:余弦函数的概念和诱导公式,以及余弦函数的性质。
难点: 余弦函数的诱导公式运用和性质应用。
三、学法与教学用具
我们已经知道正弦函数的概念是通过在单位圆中,以函数定义的形式给出来的,从而把锐角的正弦函数推广到任意角的情况;现在我们就应该与正弦函数的概念作比较,得出余弦函数的概念;同样地,可以仿照正弦函数的诱导公式推出余弦函数的诱导公式。用五点作图的方法作出y=cosx在[0,2π]上的图像,并由图像直观得到其性质。
教学用具:投影机、三角板
第一课时 余弦函数的概念和诱导公式
一、教学思路
【创设情境,揭示课题】
在初中,我们不但学习了正弦函数,也学习了余弦函数,sinα=。同样地,当我们把角放在平面直角坐标系中以后,就可以得到余弦函数的定义。
下面请同学们类比正弦函数的定义,自主学习课本P30—P31.
【探究新知】
1.余弦函数的定义
在直角坐标系中,设任意角α与单位圆交于点P(a,b),
那么点P的横坐标a叫做角α余弦函数,记作:a=cosα(α∈R).
通常我们用x,y分别表示自变量与因变量,将余弦函数表示
为y=cosx(x∈R).
如图,有向线段OM称为角α的余弦线。
其实,由相似三角形的知识,我们知道,只要已知角α
的终边上任意一点P的坐标(a,b),求出|OP|,记为r,则
角α的正弦和余弦分别为:sinα=,cosα=.
在今后的解题中,我们可以直接运用这种方法,简化运算过程。
2.余弦函数的诱导公式
从右图不难看出,角α和角2π+α,2π-α,(-α)的终边
与单位圆的交点的横坐标是相同的,所以,它们的余弦函数值相等;
角α和角π+α,π-α的终边与单位圆的交点的横坐标是相反数,
所以,它们的余弦函数值互为相反数。
由此归纳出公式:
cos(2π+α)=cosα
cos(-α) = cosα
cos(2π-α) =cosα
cos(π+α) =-cosα
cos(π-α) =-cosα
请同学们观察右图,角α与角+α的正弦、余弦函数值有什么关
系?由图可知,Rt⊿OMP≌Rt⊿OM’P’,点P的横坐标cosα与点P’的纵坐标sin(+α)
相等;点P的纵坐标sinα与点P’的横坐标cos(+α)互为相反数。我们可以得到:
sin(+α)=cosα cos(+α)=-sinα
问题与思考:验证公式 sin(+α)=cosα cos(+α)=-sinα
以上公式统称为诱导公式,其中α可以是任意角。利用诱导公式,可以将任意角的正、余弦函数问题转化为锐角的正、余弦函数问题。
【巩固深化,发展思维】
1. 例题讲评
例1.已知角α的终边经过点P(2,-4)(如图),求角α的余弦
函数值。
解:∵x=2,y=-4 , ∴ r=|OP|=2
∴cosα==
例2.如果将例1中点P的坐标改为(2t,-4t)(t≠0),那么怎样求角α的余弦函数值。
解:(提示:在r=|OP|=2|t|中,分t<0和t>0两种情况,见教材P31)
例3.求值:
(1)cos (2)cos (3)cos(-)
(4)cos(-1650°) (5)cos(-150°15’)
解:(1)cos=cos(2π-)=cos=
(2)cos=cos(π+)=-cos≈-0.9239
(3)、(4)、(5)略,见教材P33
例4.化简:
解:(略)
2. 学生练习
二、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
三、课后反思
w.w.w.k.s.5.u.c.o.m
www.
y
P(a,b)
r
x
O
M
α
π-α
π+α
-α
x
y
o
P’
P(x,y)
M
M
M’
y
x
2
-4
P
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网