本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
2.1.3 函数的单调性 教案
教学目标:理解函数的单调性
教学重点:函数单调性的概念和判定
教学过程:
1、过对函数、、及的观察提出有关函数单调性的问题.
2、阅读教材明确单调递增、单调递减和单调区间的概念
例题讲解:
例1.如图是定义在闭区间[-5,5]上的函数的图象,根据图象说出的单调区间,及在每一单调区间上,是增函数还是减函数。
解:函数的单调区间有,
其中在区间,
上是减函数,在区间上是
增函数。
注意:1 单调区间的书写
2 各单调区间之间的关系
以上是通过观察图象的方法来说明函数在某一区间的单调性,是一种比较粗略的方法,那么,对于任给函数,我们怎样根据增减函数的定义来证明它的单调性呢?
例2。证明函数在R上是增函数。
证明:设是R上的任意两个实数,且,则
,
所以,在R上是增函数。
例3.函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范围.
解 当a=0时,f(x)=x在区间[1,+∞)上是增函数.
若a<0时,无解.
∴a的取值范围是0≤a≤1.
例4.证明函数在上是减函数。
证明:设是上的任意两个实数,且,则
由,得,且
于是
所以,在上是减函数。
归纳总结:利用定义证明函数单调性的步骤:
(1) 取值
(2) 计算、
(3) 对比符号
(4) 结论
课堂练习:教材第46页 练习A、B
达标练习:
【能力达标】
一、 选择题
1、下列函数中,在区间(0,2)上为增函数的是 ( )
A. B. C. D.
2、函数的单调减区间是 ( )
A. B. C. D.
二、填空题:
3、函数,上的单调性是_____________________.
4、已知函数在上递增,那么的取值范围是________.
三、解答题:
5、设函数为R上的增函数,令
(1)、求证:在R上为增函数
(2)、若,求证
参考答案:
1、B;2、A;3、递增;4、;
小结:本节课学习了单调递增、单调递减和单调区间的概念及判定方法
课后作业:第52页 习题2-1A第5题。
www.
x
y
0
-5
5
x
y
-5
5
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网