7.4.2 超几何分布 练习巩固
1. 从50名学生中随机选出5名学生代表,则甲被选中的概率为( )
A. B. C. D.
2.一批产品共10件,次品率为20%,从中任取2件,则恰好取到1件次品的概率为( )
A. B. C. D.
3.口袋中有2个黑球,2个红球和1个白球,这些球除颜色外完全相同.任取两球,用随机变量X表示取到的黑球数,则的值为( )
A. B. C. D.
4.课桌上有12本书,其中理科书籍有4本,现从中任意拿走6本书,用随机变量表示这6本书中理科书籍的本数,则概率为的是( )
A. B. C. D.
5.现从3名女生和2名男生中随机选出2名志愿者,用表示所选2名志愿者中男生的人数,则为( )
A.0.6 B.0.8 C.1 D.1.2
6.设随机变量,且.若8名党员中有名男党员,从这8人中选4名代表,记选出的代表中男党员人数为,则( )
A. B. C. D.
7.从装有个白球,个红球的密闭容器中逐个不放回地摸取小球. 若每取出个红球得分,每取出个白球得分. 按照规则从容器中任意抽取个球,所得分数的期望为( )
A. B. C. D.
8.一袋中装5个球,编号为1,2,3,4,5,从袋中同时取出3个,以ξ表示取出的三个球中的最小号码,则随机变量ξ的分布列为( )
9.(多选题)已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为X,已知P(X=1)=,则这10件产品的次品数可能为( ) A.8 B.6 C.4 D.2
10. (多选)袋中有10个大小相同的球,其中6个黑球,4个白球,现从中任取4个球,记随机变量X为其中白球的个数,随机变量Y为其中黑球的个数,若取出一个白球得2分,取出一个黑球得1分,随机变量Z为取出4个球的总得分,则下列结论中正确的是( )
A. B.
C. D.
11. 一箱24罐的饮料中4罐有奖券,每张奖券奖励饮料一罐,从中任意抽取2罐,这2罐中有奖券的概率为 .
12. 学校要从12名候选人中选4名同学组成学生会,已知有4名候选人来自甲班. 假设每名候选人都有相同的机会被选到,则甲班恰有2名同学被选到的概率为 .
13. 一个口袋中装有5个红球和10个白球,这些球除颜色外完全相同,一次从中摸出3个球,至少摸到2个红球就中奖,则中奖的概率为 .
14. 已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为________.
某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用表示4人中的团员人数,则= ;= .
15.50张彩票中只有2张中奖票,今从中任取n张,为了使这n张彩票里至少有一张中奖的概率大于0.5,n至少为________.
16. 袋中有4个红球,3个黑球,这些球除颜色外完全相同,从袋中随机抽取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.
(1)求得分X的分布列;
(2)求得分大于6分的概率.
17. 某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有个红球,则分得个月饼;若摸出的球中有黄球,则需要表演一个节目.
(1)求一学生既分得月饼又要表演节目的概率;
(2)求每位学生分得月饼数的概率分布和数学期望.
18. 甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:
场次 1 2 3 4 5 6 7 8 9 10
甲 8 10 10 7 12 8 8 10 10 13
乙 9 13 8 12 14 11 7 9 12 10
丙 12 11 9 11 11 9 9 8 9 11
(1)从上述10场比赛中随机选择一场,求甲获胜的概率;
(2)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设表示乙得分大于丙得分的场数,求的分布列和数学期望;
(3)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设为甲获胜的场数,为乙获胜的场数,为丙获胜的场数,写出方差,,的大小关系.
19. 一盒乒乓球中共装有2只黄色球与4只白色球,现从中随机抽取3次,每次仅取1个球.
(1)若每次抽取之后,记录抽到乒乓球的颜色,再将其放回盒中,记抽到黄球的次数为随机变量,求及;
(2)若每次抽取之后,将抽到的乒乓球留在盒外,记最终盒外的黄球个数为随机变量,求及;
20. 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图如图.
(1)根据频率分布直方图,求质量超过505克的产品数量;
(2)在上述抽取的40件产品中任取2件,设X为质量超过505克的产品数量,求X的分布列;
(3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.