【题型归纳】专题5.1 轴对称之将军饮马模型重难点(五大类型)(原卷版+解析版)

文档属性

名称 【题型归纳】专题5.1 轴对称之将军饮马模型重难点(五大类型)(原卷版+解析版)
格式 zip
文件大小 810.2KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2024-05-08 19:15:20

文档简介

中小学教育资源及组卷应用平台
专题5.1 轴对称之将军饮马模型重难点题型归纳(五大类型)
【题型1 “2定点1动点”作图问题】
【题型2 “2定点1动点”求周长最小值问题】
【题型3 “2定点1动点”求线段最小值问题】
【题型4 “1定点2动点”-线段/周长最小问题】
【题型5 “1定点2动点”-角度问题】
【题型1 “2定点1动点”作图问题】
【典例1】(2023秋 许昌期末)如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB最短.下面四种选址方案符合要求的是(  )
A. B.
C. D.
【变式1-1】(2023秋 祁阳市期末)如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是(  )
A. B.
C. D.
【变式1-2】(2023秋 曲靖期末)如图,河道l的同侧有M,N两个村庄,计划铺设管道将河水引至M,N两村,下面四个方案中,管道总长度最短的是(  )
A. B.
C. D.
【变式1-3】(2024春 市南区期中)如图:直线m表示一条公路,A、B表示两所大学.要在公路m上修建一个车站P,使其到两所大学的距离之和最小,请在图上确定点P的位置.
【题型2 “2定点1动点”求周长最小值问题】
【典例2】(2023秋 金安区校级期末)如图,在△ABC中AB=AC,BC=4,面积是20,AC的垂直平分线EF分别交AC、AB边于E、F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为(  )
A.6 B.8 C.10 D.12
【变式2-1】(2023秋 新兴县期末)如图,等腰△ABC的底边BC长为3,面积是12,腰AC的垂直平分线EF分别交边AC,AB于点E,F.若D为BC边的中点,M为线段EF上的一动点,则△CDM周长的最小值为(  )
A.4 B.9.5 C.12.5 D.16
【变式2-2】(2023秋 广州期末)如图,在△ABC中,AB=AC,BC=8,△ABC面积为16,AD⊥BC于点D,直线EF垂直平分AB交AB于点E,交BC于点F,P为直线EF上一动点,则△PBD周长的最小值为   .
【变式2-3】(2023秋 宿松县期末)如图,等腰三角形ABC的底边BC长为8cm,面积是48cm2,腰AB的垂直平分线EF分别交AB,AC于点E,F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为   .
【题型3 “2定点1动点”求线段最小值问题】
【典例3】(2022春 河源期末)已知,等腰△ABC中,AB=AC,E是高AD上任一点,F是腰AB上任一点,腰AC=5,BD=3,AD=4,那么线段BE+EF的最小值是(  )
A.5 B.3 C. D.
【变式3-1】(2023春 东港市期中)如图,等腰△ABC的面积为9,底边BC的长为3,腰AC的垂直平分线EF分别交AC、AB边于点E、F,点D为BC边的中点,点M为直线EF上一动点,则DM+CM的最小值为(  )
A.12 B.9 C.6 D.3
【变式3-2】(2022春 埇桥区校级期末)如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果点M,N分别为BD,BC上的动点,那么CM+MN的最小值是(  )
A.4 B.4.8 C.5 D.6
【题型4“1定点2动点”-线段/周长最小问题】
【典例4】(郧西县月考)如图,已知∠AOB的大小为30°,P是∠AOB内部的一个定点,且OP=1,点E、F分别是OA、OB上的动点,则△PEF周长的最小值等于(  )
A. B. C.2 D.1
【变式4-1】(2023春 惠安县期末)如图,已知∠AOB=30°,点P是∠AOB内部的一点,且OP=4,点M、N分别是射线OA和射线OB上的一动点,则△PMN的周长的最小值是(  )
A.2 B.4 C.6 D.8
【变式4-2】(2022秋 应城市期末)如图,∠MON=50°,P为∠MON内一点,OM上有点A,ON上有点B,当△PAB的周长取最小值时,∠APB的度数为(  )
A.60° B.70° C.80° D.100°
【典例5】(2023春 和平区期末)如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF的值最小时,∠AEB的度数为(  )
A.105° B.115° C.120° D.130°
【变式5-1】(2023 明水县模拟)如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=(  )
A.2 B.4 C.6 D.8
【变式5-2】(2023春 市中区期末)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是(  )
A.2.4 B.4.8 C.4 D.5
【题型4 “1定点2动点”-角度问题】
【典例6】(2021秋 丛台区校级期末)如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为(  )
A.80° B.90° C.100° D.130°
【变式6-1】(2022秋 仁怀市期末)如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,点E,F分别为BC和CD上的动点,连接AE,AF.当△AEF的周长最小时,∠EAF的度数为(  )
A.60° B.90° C.100° D.120°
【变式6-2】(2022春 驻马店期末)如图,四边形ABCD中,∠BAD=a,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,则∠MAN的度数为(  )
A.a B.2a﹣180° C.180°﹣a D.a﹣90°中小学教育资源及组卷应用平台
专题5.1 轴对称之将军饮马模型重难点题型归纳(五大类型)
【题型1 “2定点1动点”作图问题】
【题型2 “2定点1动点”求周长最小值问题】
【题型3 “2定点1动点”求线段最小值问题】
【题型4 “1定点2动点”-线段/周长最小问题】
【题型5 “1定点2动点”-角度问题】
【题型1 “2定点1动点”作图问题】
【典例1】(2023秋 许昌期末)如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB最短.下面四种选址方案符合要求的是(  )
A. B.
C. D.
【答案】A
【解答】解:根据题意得,在公路l上选取点P,使PA+PB最短.
则选项A 符合要求,
故选:A.
【变式1-1】(2023秋 祁阳市期末)如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是(  )
A. B.
C. D.
【答案】C
【解答】解:作点P关于直线l的对称点P′,连接QP′交直线l于M.
根据两点之间,线段最短,可知选项C铺设的管道,则所需管道最短.
故选:C.
【变式1-2】(2023秋 曲靖期末)如图,河道l的同侧有M,N两个村庄,计划铺设管道将河水引至M,N两村,下面四个方案中,管道总长度最短的是(  )
A. B.
C. D.
【答案】B
【解答】解:作点M关于直线l的对称点M′,连接M′N交直线m于点Q,则MP+NP=M′N,此时管道长度最短.
故选:B.
【变式1-3】(2024春 市南区期中)如图:直线m表示一条公路,A、B表示两所大学.要在公路m上修建一个车站P,使其到两所大学的距离之和最小,请在图上确定点P的位置.
【答案】见解答.
【解答】解:如图,点P即为所求.
【题型2 “2定点1动点”求周长最小值问题】
【典例2】(2023秋 金安区校级期末)如图,在△ABC中AB=AC,BC=4,面积是20,AC的垂直平分线EF分别交AC、AB边于E、F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为(  )
A.6 B.8 C.10 D.12
【答案】D
【解答】解:连接AD,AM.
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC AD=×4×AD=20,解得AD=10,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴MA=MC,
∵AD≤AM+MD,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=(CM+MD)+CD=AD+BC=10+×4=10+2=12.
故选:D.
【变式2-1】(2023秋 新兴县期末)如图,等腰△ABC的底边BC长为3,面积是12,腰AC的垂直平分线EF分别交边AC,AB于点E,F.若D为BC边的中点,M为线段EF上的一动点,则△CDM周长的最小值为(  )
A.4 B.9.5 C.12.5 D.16
【答案】B
【解答】解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC AD=×3×AD=12,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×3=8+1.5=9.5.
故选:B.
【变式2-2】(2023秋 广州期末)如图,在△ABC中,AB=AC,BC=8,△ABC面积为16,AD⊥BC于点D,直线EF垂直平分AB交AB于点E,交BC于点F,P为直线EF上一动点,则△PBD周长的最小值为  8 .
【答案】8.
【解答】解:如图,连接PA.
∵AB=AC,AD⊥BC,
∴BD=DC=4,
∵S△ABC= BC AD=16,
∴AD=4,
∵EF垂直平分AB,
∴PB=PA,
∴PB+PD=PA+PD,
∵PA+PD≥AD,
∴PA+PD≥4,
∴PA+PD的最小值为4,
∴△PBD的最小值为4+4=8,
故答案为:8.
【变式2-3】(2023秋 宿松县期末)如图,等腰三角形ABC的底边BC长为8cm,面积是48cm2,腰AB的垂直平分线EF分别交AB,AC于点E,F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为  16cm .
【答案】16cm.
【解答】解:如图,连接AD.
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC= BC AD=×8×AD=48,
∴AD=12cm,
∵EF是线段AB的垂直平分线,
∴点B关于直线EF的对称点为点A,
∴AD的长为BM+MD的最小值,
∴△BDM的周长最短为AD+BD=AD+BC=16(cm),
故答案为:16cm.
【题型3 “2定点1动点”求线段最小值问题】
【典例3】(2022春 河源期末)已知,等腰△ABC中,AB=AC,E是高AD上任一点,F是腰AB上任一点,腰AC=5,BD=3,AD=4,那么线段BE+EF的最小值是(  )
A.5 B.3 C. D.
【答案】C
【解答】解:如图作点F关于AD的对称点F′,连接EF′.作BH⊥AC于H.
∵AB=AC,AD⊥BC,
∴BD=CD=3,
∴点F′在AC上,
∵BE+EF=BE+EF′,
根据垂线段最短可知,当B,E,F′共线,且与H重合时,BE+EF的值最小,最小值就是线段BH的长.
在Rt△ACD中,AC=5,
∵ BC AD= AC BH,
∴BH=,
∴BE+EF的最小值为,
故选:C
【变式3-1】(2023春 东港市期中)如图,等腰△ABC的面积为9,底边BC的长为3,腰AC的垂直平分线EF分别交AC、AB边于点E、F,点D为BC边的中点,点M为直线EF上一动点,则DM+CM的最小值为(  )
A.12 B.9 C.6 D.3
【答案】C
【解答】解:连接AD,AM.
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC AD=×3×AD=9,解得AD=6,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴CM=AM,
∴CD+CM+DM=CD+AM+DM,
∵AM+DM≥AD,
∴AD的长为CM+MD的最小值,
∴DM+CM的最小值为6.
故选:C.
【变式3-2】(2022春 埇桥区校级期末)如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果点M,N分别为BD,BC上的动点,那么CM+MN的最小值是(  )
A.4 B.4.8 C.5 D.6
【答案】B
【解答】解:如图所示:
过点C作CE⊥AB于点E,交BD于点M,
过点M作MN⊥BC于点N,
∵BD平分∠ABC,
∴ME=MN,
∴CM+MN=CM+ME=CE.
∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,CE⊥AB,
∴S△ABC= AB CE= AC BC,
∴10CE=6×8,
∴CE=4.8.
即CM+MN的最小值是4.8,
故选:B.
【题型4“1定点2动点”-线段/周长最小问题】
【典例4】(郧西县月考)如图,已知∠AOB的大小为30°,P是∠AOB内部的一个定点,且OP=1,点E、F分别是OA、OB上的动点,则△PEF周长的最小值等于(  )
A. B. C.2 D.1
【答案】D
【解答】解:作P点关于OA的对称点P',作P点关于OB的对称点P'',连接P'P''交OA于点E、交BO于点F,连接OP'、OP'',
由对称性可知,PE=P'E,PF=P''F,
∴△PEF周长=PE+PF+EF=P'E+P''F+EF=P'P'',
此时△PEF周长最小,
∵PO=OP',OP=OP'',
∴OP'=OP'',
∵∠AOB=30°,
∴∠P'OP''=60°,
∴△OP'P''是等边三角形,
∵OP=1,
∴P'P''=1,
故选:D.
【变式4-1】(2023春 惠安县期末)如图,已知∠AOB=30°,点P是∠AOB内部的一点,且OP=4,点M、N分别是射线OA和射线OB上的一动点,则△PMN的周长的最小值是(  )
A.2 B.4 C.6 D.8
【答案】B
【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.
∵点P关于OA的对称点为C,关于OB的对称点为D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=4,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等边三角形,
∴CD=OC=OD=4.
∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=4,
故选:B.
【变式4-2】(2022秋 应城市期末)如图,∠MON=50°,P为∠MON内一点,OM上有点A,ON上有点B,当△PAB的周长取最小值时,∠APB的度数为(  )
A.60° B.70° C.80° D.100°
【答案】C
【解答】解:如图,分别作P关于OM、ON的对称点P1、P2,然后连接两个对称点即可得到A、B两点.
∴△PAB即为所求的三角形,
根据对称性知道:
∠APO=∠AP1O,∠BPO=∠BP2O,
还根据对称性知道:∠P1OP2=2∠MON,OP1=OP2,
而∠MON=50°,
∴∠P1OP2=100°,
∴∠AP1O=∠BP2O=40°,
∴∠APB=2×40°=80°.
故选:C.
【典例5】(2023春 和平区期末)如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF的值最小时,∠AEB的度数为(  )
A.105° B.115° C.120° D.130°
【答案】B
【解答】解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,
此时BE+EF最小.
∵AD是△ABC的角平分线,
∴∠BAD=∠B′AD=25°,
∴∠AE′F′=65°,
∵BB′⊥AD,
∴∠AGB=∠AGB′=90°,
∵AG=AG,
∴△ABG≌△AB′G(ASA),
∴BG=B′G,∠ABG=∠AB′G,
∴AD垂直平分BB′,
∴BE=BE′,
∴∠E′B′G=∠E′BG,
∵∠BAC=50°,
∴∠AB′F′=40°,
∴∠ABE=40°,
∴∠BE′F′=50°,
∴∠AE′B=115°.
故选:B.
【变式5-1】(2023 明水县模拟)如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=(  )
A.2 B.4 C.6 D.8
【答案】A
【解答】解:作B点关于AD的对称点E,过E点作EN⊥AB交AB于点N,交AD于CM于点M,连结BM,
∵∠BAC=60°,AD平分∠BAC,
∴E点在AC上,
∵BM+MN=EM+MN=EN,此时BM+MN的值最小,
由对称性可知,AE=AB,
∵AB=4,
∴AE=4,
在Rt△ABE中,∠EAN=60°,
∴∠AEN=30°,
∴AN=2,
故选:A.
【变式5-2】(2023春 市中区期末)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是(  )
A.2.4 B.4.8 C.4 D.5
【答案】B
【解答】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,
∵AD是∠BAC的平分线.
∴PQ=PM,这时PC+PQ有最小值,即CM的长度,
∵AC=6,AB=10,∠ACB=90°,BC=8,
∵S△ABC=AB CM=AC BC,
∴CM==,
即PC+PQ的最小值为.
故选:B.
【题型4 “1定点2动点”-角度问题】
【典例6】(2021秋 丛台区校级期末)如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为(  )
A.80° B.90° C.100° D.130°
【答案】C
【解答】解:作A点关于CD的对称点F,作A点关于BC的对称点E,连接EF交CD于N,交BC于M,连接AM、AN,
∵∠B=∠D=90°,
∴AN=NF,AM=EM,
∴△AMN的周长=AM+AN+MN=NF+MN+EM=EF,此时△AMN的周长有最小值,
∵∠FAN=∠F,∠E=∠EAM,
∴∠E+∠F=180°﹣∠BAD,
∵∠BAD=130°,
∴∠E+∠F=50°,
∴∠BAM+∠FAN=50°,
∴∠MAN=130°﹣50°=80°,
∴∠ANM+∠AMN=180°﹣∠MAN=100°,
故选:C.
【变式6-1】(2022秋 仁怀市期末)如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,点E,F分别为BC和CD上的动点,连接AE,AF.当△AEF的周长最小时,∠EAF的度数为(  )
A.60° B.90° C.100° D.120°
【答案】C
【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.
∵DAB=140°,
∴∠AA′E+∠A″=180°﹣140°=40°,
∵∠EA′A=∠EAA′,∠FAD=∠A″,
∴∠EAA′+∠A″AF=40°,
∴∠EAF=140°﹣40°=100°.
故选:C.
【变式6-2】(2022春 驻马店期末)如图,四边形ABCD中,∠BAD=a,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,则∠MAN的度数为(  )
A.a B.2a﹣180° C.180°﹣a D.a﹣90°
【答案】B
【解答】解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.
∵∠ABC=∠ADC=90°,
∴A、A′关于BC对称,A、A″关于CD对称,
此时△AMN的周长最小,
∵BA=BA′,MB⊥AB,
∴MA=MA′,同理:NA=NA″,
∴∠A′=∠MAB,∠A″=∠NAD,
∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,
∴∠AMN+∠ANM=2(∠A′+∠A″),
∵∠BAD=a,
∴∠A′+∠A″=180°﹣a,
∴∠AMN+∠ANM=2×(180°﹣a)=360°﹣2a.
∴∠MAN=180°﹣(360°﹣2a)=2a﹣180°,
故选:B.