中小学教育资源及组卷应用平台
第八章《二元一次方程组》单元检测题
一、选择题(每题3分,共30分)
1. 方程2x-y=3和2x+y=9的公共解是( )
A. B. C. D.
2. 已知是方程组的解,则a+b的值是( )
A.2 B.-2 C.4 D.-4
3. 当a为何值时,方程组的解x,y的值互为相反数( )
A.a=8 B.a=-8 C.a=10 D.a=-10
4、若方程组的解也是方程的解,则( )
A 6 B 10 C 9 D 110
5、若,则的值为( )
A 0 B C D
6、在中,当1时,0;当-1时,6;当2时,3;则当-2时,( )
A、13 B、14 C、15 D、16
7.若和是方程的两组解,则m,n的值分别为( )
A., B.2,4 C.4,2 D.,
8.解方程组①与②,比较简便的方法是( )
A.均用代入法B.均用加减法C.①用代法,②用加减法D.①用加减法,②用代入法
9.果树基地安排26名工人将采摘的水果包装成果篮,每个工人每小时可包装200个苹果或者300个梨,每个果篮中放3个苹果和2个梨.为了使包装的水果刚好完整配成果篮,应该安排多少名工人包装苹果,多少名工人包装梨?设安排x名工人包装苹果,y名工人包装梨,可列方程组为( )
A. B.
C. D.
10.我国古代数学著作《增删算法统宗》中有这么一首诗:“今有布绢三十疋,共卖价钞五百七.四疋绢价九十贯,三疋布价该五十.欲问绢布各几何?价钞各该分端的.若人算得无差讹,堪把芳名题郡邑.”其大意是:今有绵与布30疋,卖得570贯钱,4疋绢价90贯,3疋布价50贯,欲问绢布有多少,分开把价算,若人算得无差错,你的名字城镇到处扬.设有绢疋,布疋,依据题意可列方程组为( )
A. B.
C. D.
二、填空题(每题3分,共24分)
11.已知是关于x,y的二元一次方程的一个解,那么m的值为___________.
12.已知方程x 3y=5,用含y的代数式表示x,则x=______.
13.已知xyz≠0,从方程组中求出x:y:z=___.
14.已知关于x、y的方程组有整数解,即x、y都是整数,m是正整数,则m的值是__.
15.已知是方程3mx﹣y=﹣1的解,则m=_____.
16.若关于的二元一次方程组的解是互为相反数,则的值是_________.
17.有A,B两种医用外科口罩,2包A型口罩与3包B型口罩合计27元,7包A型口罩与8包B型口罩合计77元,则3包A型口罩与2包B型口罩合计________元.
18.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是__分钟.
三.解答题(46分,第20题6分,19、21、22、23、24每题8分)
19.解方程组:
(1); (2).
(3) (4)
20.已知关于的方程组的解满足,则的取值.
21.已知关于,的方程组
(1)请直接写出方程的所有正整数解;
(2)若方程组的解满足,求的值;
(3)无论实数取何值,方程总有一个公共解,请直接写出这个公共解.
22.如图,在长为10米,宽为8米的长方形空地上,沿平行于长方形边的方向分割出三个形状、大小完全一样的小长方形花圃(阴影部分).求其中一个小长方形的长和宽.
23.某学校为了美化绿化校园,计划购买甲,乙两种花木共100棵绿化操场,其中甲种花木每棵60元,乙种花木每棵80元.
(1)若购买甲,乙两种花木刚好用去7200元,则购买了甲,乙两种花木各多少棵?
(2)如果购买乙种花木的数量不少于甲种花木的数量,请设计一种购买方案使所需费用最低,并求出该购买方案所需总费用.
24.某天,一蔬菜经营户用 1200 元钱按批发价从蔬菜批发市场买了西红柿和豆角共 400 kg,然后在市场上按零售价出售,西红柿和豆角当天的批发价和零售价如表所示:
品名 西红柿 豆角
批发价(单位:元/kg) 2.4 3.2
零售价(单位:元/kg) 3.8 5.2
(1)该经营户所批发的西红柿和豆角的质量分别为多少 kg?
(2)如果西红柿和豆角全部以零售价售出,他当天卖出这些西红柿和豆角赚了多少钱?
【答案】
一、选择题:
题号 1 2 3 4 5 6 7 8 9 10
答案 A D B A D B C B A C
二、填空题:
11.解:方程移项,得y=﹣2x+3.
故答案为:y=﹣2x+3.
12.解:根据题意得:|n|=1,m﹣2=1,
解得:n=±1,m=3,
∴m+n=3+1=4,m+n=3﹣1=2,
∴m+n的值是2或4,
故答案为:2或4.
13.解:把代入方程ax﹣y=4,
得2a﹣3=4,
解得a=.
故答案为:.
14.6
15.
16.9
17.解:设甲的速度为xm/s,乙的速度为ym/s,
依题意,得:,
解得:.
故答案为:.
18.解:设鸡有x只,兔有y只,
根据题意,可列方程组为,
故答案是:.
三.解答题
19.解:(1)
,
把①代入②得:4(2y﹣1)+3y=7,
解得:y=1,
把y=1代入①得:x=1,
则方程组的解为;
(2)
,
①+②得:4x=4,
解得:x=1,
把x=1代入①得:y=﹣2,
则方程组的解为.
(3)
①+②×3,得10x=50,
解得x=5.
把x=5代入②,
得2×5+y=13,解得y=3.
于是,得方程组的解为
(4)
①+②得3x+4z=-4.④
④+③×2得x=-2.
把x=-2代入①得y=1.
把x=-2代入③得z=.
所以
20.a> 1
21.(1);(2);(3).
22. 8
【解析】
设小长方形的长为 x 米,宽为y米. 依题意有:解方程组即可.
解: 设小长方形的长为 x 米,宽为y米.
依题意有:
解此方程组得:
故,小长方形的长为 4米,宽为2米.
【点睛】
本题考核知识点:列方程组解应用题.解题关键点:根据已知列出方程组.
23.(1)购买甲种花木40棵,乙种花木60棵;(2)当购买甲种花木50棵,乙种花木50棵是所需费用最低,费用为7000元.
24.(1);(2)当天卖这些西红柿和豆角赚了元