首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
人教版(2024)
七年级下册
第九章 不等式与不等式组
本章复习与测试
不等式与不等式组(培优练)(含解析)
文档属性
名称
不等式与不等式组(培优练)(含解析)
格式
docx
文件大小
619.2KB
资源类型
试卷
版本资源
人教版
科目
数学
更新时间
2024-05-13 22:44:28
点击下载
图片预览
1
2
3
4
5
文档简介
不等式与不等式组(培优练)
一、单选题(本大题共10小题,每小题3分,共30分)
1.(2023·浙江杭州·中考真题)已知数轴上的点分别表示数,其中,.若,数在数轴上用点表示,则点在数轴上的位置可能是( )
A. B.
C. D.
2.(2023·湖北鄂州·中考真题)已知不等式组的解集是,则( )
A.0 B. C.1 D.2023
3.(2023·四川眉山·中考真题)关于x的不等式组的整数解仅有4个,则m的取值范围是( )
A. B. C. D.
4.(2022·山东潍坊·中考真题)不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
5.(2022·湖南邵阳·中考真题)关于的不等式组有且只有三个整数解,则的最大值是( )
A.3 B.4 C.5 D.6
6.(2022·四川内江·中考真题)如图,数轴上的两点A、B对应的实数分别是a、b,则下列式子中成立的是( )
A.1﹣2a>1﹣2b B.﹣a<﹣b C.a+b<0 D.|a|﹣|b|>0
7.(2021·广西·中考真题)定义一种运算:,则不等式的解集是( )
A.或 B. C.或 D.或
8.(2020·山东德州·中考真题)若关于x的不等式组的解集是,则a的取值范围是( )
A. B. C. D.
9.(2019·湖北恩施·中考真题)已知关于的不等式组恰有3个整数解,则的取值范围为( )
A. B. C. D.
10.(2019·湖南常德·中考真题)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为( )
A. B. C. D.
二、填空题(本大题共8小题,每小题4分,共32分)
11.(2023·辽宁丹东·中考真题)不等式组的解集是 .
12.(2023·黑龙江大庆·中考真题)若关于的不等式组有三个整数解,则实数的取值范围为 .
13.(2023·黑龙江·中考真题)关于的不等式组有3个整数解,则实数的取值范围是 .
14.(2023·四川宜宾·中考真题)若关于x的不等式组所有整数解的和为,则整数的值为 .
15.(2022·黑龙江·中考真题)若关于x的一元一次不等式组的解集为,则a的取值范围是 .
16.(2022·四川达州·中考真题)关于x的不等式组恰有3个整数解,则a的取值范围是 .
17.(2018·贵州贵阳·中考真题)已知关于x的不等式组无解,则a的取值范围是 .
18.(2021·黑龙江绥化·中考真题)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个种奖品和4个种奖品共需100元;购买5个种奖品和2个种奖品共需130元.学校准备购买两种奖品共20个,且种奖品的数量不小于种奖品数量的,则在购买方案中最少费用是 元.
三、解答题(本大题共6小题,共58分)
19.(8分)(2023·江苏盐城·中考真题)解不等式,并把它的解集在数轴上表示出来.
20.(8分)(2023·山东济南·中考真题)解不等式组:,并写出它的所有整数解.
21.(10分)(2023·山东淄博·中考真题)若实数,分别满足下列条件:
(1);
(2).
试判断点所在的象限.
22.(10分)(2023·辽宁·中考真题)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环收入76元.
(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?
(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2500元,那么最多可购买甲种驱蚊手环多少个?
23.(10分)(2023·湖南娄底·中考真题)为落实“五育并举”,绿化美化环境,学校在劳动周组织学生到校园周边种植甲、乙两种树苗.已知购买甲种树苗3棵,乙种树苗2棵共需12元,;购买甲种树苗1棵,乙种树苗3棵共需11元.
(1)求每棵甲、乙树苗的价格.
(2)本次活动共种植了200棵甲、乙树苗,假设所种的树苗若干年后全部长成了参天大树,并且平均每棵树的价值(含生态价值,经济价值)均为原来树苗价的100倍,要想获得不低于5万元的价值,请问乙种树苗种植数量不得少于多少棵?
24.(12分)(2023·河南·中考真题)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.
活动一:所购商品按原价打八折;
活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)
(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.
(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.
(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.
中小学教育资源及组卷应用平台
试卷第1页,共3页
参考答案:
1.B
【分析】先由,,,根据不等式性质得出,再分别判定即可.
【详解】解:∵,,
∴
∵
∴
A、,故此选项不符合题意;
B、,故此选项符合题意;
C、,故此选项不符合题意;
D、,故此选项不符合题意;
故选:B.
【点拨】本题考查用数轴上的点表示数,不等式性质,由,,得出是解题的关键.
2.B
【分析】按照解一元一次不等式组的步骤进行计算,可得,再结合已知可得,,然后进行计算可求出,的值,最后代入式子中进行计算即可解答.
【详解】解:,
解不等式①得:,
解不等式②得:,
∴原不等式组的解集为:,
∵不等式组的解集是,
∴,,
∴,,
∴,
故选:B.
【点拨】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
3.A
【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m的范围即可.
【详解】解:,
由②得:,
解集为,
由不等式组的整数解只有4个,得到整数解为2,1,0,,
∴,
∴;
故选:A.
【点拨】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到是解此题的关键.
4.B
【分析】分别求得不等式组中每个不等式的解集,从而得到不等式组的解集,即可求解.
【详解】解:
解不等式①得,;
解不等式②得,;
则不等式组的解集为:,
数轴表示为:,
故选:B.
【点拨】此题考查一元一次不等式组的解法以及解集在数轴上的表示,如果带等号用实心表示,如果不带等号用空心表示,解题的关键是正确求得不等式组的解集.
5.C
【分析】分别对两个不等式进行求解,得到不等式组的解集为,根据不等式组有且只有三个整数解的条件计算出的最大值.
【详解】解不等式,
,
∴,
∴,
解不等式,
得,
∴,
∴的解集为,
∵不等式组有且只有三个整数解,
∴不等式组的整数解应为:2,3,4,
∴,
∴的最大值应为5
故选:C.
【点拨】本题考查不等式组的整数解,解题的关键是熟练掌握不等式组的相关知识.
6.A
【分析】根据数轴得出a<b,根据不等式的性质对四个选项依次分析即可得到答案.
【详解】
解:由题意得:a<b,
∴﹣2a>﹣2b,
∴1﹣2a>1﹣2b,
∴A选项的结论成立;
∵a<b,
∴﹣a>﹣b,
∴B选项的结论不成立;
∵﹣2<a<﹣1,2<b<3,
∴,
∴,
∴a+b>0,
∴C选项的结论不成立;
∵
∴,
∴D选项的结论不成立.
故选:A.
【点拨】
本题考查数轴、不等式、绝对值的性质,解题的关键是熟练掌握数轴、不等式、绝对值的相关知识.
7.C
【分析】根据新定义运算规则,分别从和两种情况列出关于x的不等式,求解后即可得出结论.
【详解】解:由题意得,当时,
即时,,
则,
解得,
∴此时原不等式的解集为;
当时,
即时,,
则,
解得,
∴此时原不等式的解集为;
综上所述,不等式的解集是或.
故选:C.
【点拨】本题主要考查解一元一次不等式,解题的关键是根据新定义运算规则列出关于x的不等式.
8.A
【分析】分别求出每个不等式的解集,根据不等式组的解集为可得关于a的不等式,解之可得.
【详解】解:解不等式>,得:,
解不等式-3x>-2x-a,得:x<a,
∵不等式组的解集为,
∴,
故选:A.
【点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
9.A
【分析】先根据一元一次不等式组解出x的取值范围,再根据不等式组只有三个整数解,求出实数a的取值范围即可.
【详解】,
解不等式①得:x≥-1,
解不等式②得:x
∵不等式组有解,
∴-1≤x
∵不等式组只有三个整数解,
∴不等式组的整数解为:-1、0、1,
∴1
故选A
【点拨】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
10.B
【分析】根据三人说法都错了得出不等式组解答即可.
【详解】根据题意可得:,
可得:,
∴
故选B.
【点拨】此题考查一元一次不等式组的应用,关键是根据题意得出不等式组解答.
11.
【分析】分别求解两个不等式,再根据写出不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”,即可解答.
【详解】解:,
由①可得:,
由②可得:,
∴原不等式组的解集为,
故答案为:.
【点拨】本题主要考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法和步骤,以及写出不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”.
12.
【分析】首先解不等式组求得解集,然后根据不等式组有三个整数解,确定整数解,则可以得到一个关于的不等式组求得的范围.
【详解】解:解不等式,得:,
解不等式,得:,
不等式组有三个整数解,
不等式组的整数解为,0、1,
则,
解得.
故答案为:.
【点拨】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
13./
【分析】解不等式组,根据不等式组有3个整数解得出关于m的不等式组,进而可求得的取值范围.
【详解】解:解不等式组得:,
∵关于的不等式组有3个整数解,
∴这3个整数解为,,,
∴,
解得:,
故答案为:.
【点拨】本题考查了解一元一次不等式组,一元一次不等式组的整数解,正确得出关于m的不等式组是解题的关键.
14.或
【分析】根据题意可求不等式组的解集为,再分情况判断出的取值范围,即可求解.
【详解】解:由①得:,
由②得:,
不等式组的解集为:,
所有整数解的和为,
①整数解为:、、、,
,
解得:,
为整数,
.
②整数解为:,,,、、、,
,
解得:,
为整数,
.
综上,整数的值为或
故答案为:或.
【点拨】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.
15.
【分析】先求出每个不等式的解集,根据已知不等式组的解集即可得出答案.
【详解】解:,
解不等式①得:,
解不等式②得:,
关于的不等式组的解集为,
.
故答案为:.
【点拨】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
16.
【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围
【详解】解:
解不等式①得:,
解不等式②得:,
不等式组有解,
∴不等式组的解集为: ,
不等式组恰有3个整数解,则整数解为1,2,3
,
解得.
故答案为:.
【点拨】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.
17.a≥2
【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.
【详解】解:,
由①得:x≤2,
由②得:x>a,
∵不等式组无解,
∴a≥2,
故答案为a≥2.
【点拨】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.
18.330
【分析】设A种奖品的单价为x元,B种奖品的单价为y元,根据“购买2个A种奖品和4个种奖品共需100元;购买5个A种奖品和2个种奖品共需130元”,即可得出关于A,B的二元一次方程组,在设购买A种奖品m个,则购买B种奖品(20-m)个,根据购买A种奖品的数量不少于B种奖品数量的,即可得出关于m的一元一次不等式,再结合费用总量列出一次函数,根据一次函数性质得出结果.
【详解】解:设A种奖品的单价为x元,B种奖品的单价为y元,
依题意,得:,
解得:
∴A种奖品的单价为20元,B种奖品的单价为15元.
设购买A种奖品m个,则购买B种奖品 个,根据题意得到不等式:
m≥(20-m),解得:m≥,
∴≤m≤20,
设总费用为W,根据题意得:
W=20m+15(20-m)=5m+300,
∵k=5>0,
∴W随m的减小而减小,
∴当m=6时,W有最小值,
∴W=5×6+300=330元
则在购买方案中最少费用是330元.
故答案为:330.
【点拨】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式与一次函数.
19.,数轴见详解
【分析】根据解一元一次不等式的步骤解答即可.
【详解】
去分母得:,
去括号得:,
移项得:,
合并同类项得:,
系数化为1:.
在数轴上可表示为:
.
【点拨】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.
20.,整数解为0,1,2
【分析】分别求解两个不等式,再写出解集,最后求出满足条件的整数解即可.
【详解】解:解不等式①,得,
解不等式②,得,
在同一条数轴上表示不等式①②的解集,
原不等式组的解集是,
∴整数解为0,1,2.
【点拨】本题主要考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法和步骤,以及写出不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”.
21.点在第一象限或点在第二象限
【分析】运用直接开平方法解一元二次方程即可;解不等式求出解题,在分情况确定,的符号确定点所在象限解题即可.
【详解】解:
或
,;
,
解得:;
∴当,时,,,点在第一象限;
当,时,,,点在第二象限;
【点拨】本题考查点在平面直角系的坐标特征,解不等式,平方根的意义,利用不等式的性质判断点的坐标特征是解题的关键.
22.(1)36;20
(2)31
【分析】(1)设每个甲种驱蚊手环的售价x元,每个乙种驱蚊手环的售价是y元,根据“卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元”,可列出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买甲种驱蚊手环m个,则购买乙种驱蚊手环个,利用总价=单价×数量,结合总价不超过2500元,可列出关于m的一元一次不等式,解之可得出m的取值范围,再取其中的最大整数值,即可得出结论.
【详解】(1)解:设每个甲种驱蚊手环的售价x元,每个乙种驱蚊手环的售价是y元,
根据题意得, ,解得: ,
答:每个甲种驱蚊手环的售价是36元,每个乙种驱蚊手环的售价是20元;
(2)解:设购买甲种驱蚊手环m个,则购买乙种驱蚊手环个,
根据题意得:,
解得,
又∵m为正整数,
∴m的最大值为31.
答:最多可购买甲种驱蚊手环31个.
【点拨】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是: 找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.
23.(1)每棵甲种树苗的价格为2元,每棵乙种树苗的价格3元;
(2)乙种树苗种植数量不得少于100棵.
【分析】(1)设每棵甲种树苗的价格为x元,每棵乙种树苗的价格y元,由“购买甲种树苗3棵,乙种树苗2棵共需12元,;购买甲种树苗1棵,乙种树苗3棵共需11元”列出方程组,可求解;
(2)设乙种树苗种植数量为m棵,则甲种树苗数量为棵,根据“获得不低于5万元的价值”列不等式解题即可.
【详解】(1)解:设每棵甲种树苗的价格为x元,每棵乙种树苗的价格y元, 由题意可得:
, 解得:,
答:每棵甲种树苗的价格为2元,每棵乙种树苗的价格3元;
(2)设乙种树苗种植数量为m棵,则甲种树苗数量为棵,
∴,
解得:,
∴的最小整数解为100.
答:乙种树苗种植数量不得少于100棵.
【点拨】本题考查的是二元一次方程组的应用,一元一次不等式的应用,熟练的确定相等关系与不等关系是解本题的关键.
24.(1)活动一更合算
(2)400元
(3)当或时,活动二更合算
【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;
(2)设这种健身器材的原价是元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;
(3)由题意得活动一所需付款为元,活动二当时,所需付款为元,当时,所需付款为元,当时,所需付款为元,然后根据题意列出不等式即可求解.
【详解】(1)解:购买一件原价为450元的健身器材时,
活动一需付款:元,活动二需付款:元,
∴活动一更合算;
(2)设这种健身器材的原价是元,
则,
解得,
答:这种健身器材的原价是400元,
(3)这种健身器材的原价为a元,
则活动一所需付款为:元,
活动二当时,所需付款为:元,
当时,所需付款为:元,
当时,所需付款为:元,
①当时,,此时无论为何值,都是活动一更合算,不符合题意,
②当时,,解得,
即:当时,活动二更合算,
③当时,,解得,
即:当时,活动二更合算,
综上:当或时,活动二更合算.
【点拨】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.
点击下载
同课章节目录
第五章 相交线与平行线
5.1 相交线
5.2 平行线及其判定
5.3 平行线的性质
5.4 平移
第六章 实数
6.1 平方根
6.2 立方根
6.3 实数
第七章 平面直角坐标系
7.1 平面直角坐标系
7.2 坐标方法的简单应用
第八章 二元一次方程组
8.1 二元一次方程组
8.2 消元---解二元一次方程组
8.3 实际问题与二元一次方程组
8.4 三元一次方程组的解法
第九章 不等式与不等式组
9.1 不等式
9.2 一元一次不等式
9.3 一元一次不等式组
第十章 数据的收集、整理与描述
10.1 统计调查
10.2 直方图
10.3 课题学习从数据谈节水
点击下载
VIP下载