首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
冀教版(2024)
七年级下册(2024)
第十一章 一元一次不等式和一元一次不等式组
11.1 不等式
13.1 不等式课时教案
文档属性
名称
13.1 不等式课时教案
格式
rar
文件大小
37.3KB
资源类型
教案
版本资源
冀教版
科目
数学
更新时间
2009-07-30 14:06:00
点击下载
图片预览
1
2
3
文档简介
本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
13.1 不等式
〖教学目标〗
在本学段,学生将经历从实际问题中建立不等关系,进而抽象出不等式的过程,体会不等式和方程一样,都是刻画现实世界中同类量之间关系的重要数学模型,同时进一步发展学生的符号感.
(-)知识目标
1.能够根据具体问题中的大小关系了解不等式的意义.
2.理解什么是不等式成立,掌握不等式是否成立的判定方法.
3.能依题意准确迅速地列出相应的不等式.体会现实生活中存在着大量的不等关系,学习不等式的有关知识是生活和工作的需要.
(二)能力目标
1.培养学生运用类比方法研究相关内容的能力.
2.训练学生运用所学知识解决实际问题的能力.
(三)情感目标
1.通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识.
2.通过不等式的学习,渗透具有不等量关系的数学美.
〖教学重点〗
能依题意准确迅速地列出相应的不等式.
〖教学难点〗
理解符号“≥”“≤”的含义,理解什么是不等式成立.
〖教学过程〗
一、课前布置
1.浏览课本P2~21,了解本章结构。
自学:阅读课本P2~P4,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).
2.查找“不等号的由来”
备注: 不等号的由来
①现实世界中存在着大量的不等关系,如何用符号表示呢?为了寻求一套表示“大于”或“小于”的符号,数学家们绞尽脑汁.1631年,英国数学家哈里奥特首先创用符号“>”表示“大于”,“<”表示“小于”,这就是现在通用的大于号和小于号.与哈里奥特同时代的数学家们也创造了一些表示大小关系的符号,但都因书写起来十分繁琐而被淘汰.
②后来,人们在表达不等关系时,常把等式作为不等式的特殊情况来处理.在许多情况下,要用到一个数(或量)大于或等于另一个数(或量),此时就把“>”和“=”有机地结合起来得到符号“≥”,读做“大于或等于”,有时也称为“不小于”.同样,把符号“≤”读做“小于或等于”,有时也称为“不大于”.
那么如何理解符号“≥”“≤”的含义呢?用“≥”表示“>”或“=”,即两者必居其一,不要求同时满足.例如≥0,其中只有“>”成立,“=”就不成立.同样“≤”也有类似的情况.
③因此有人把a>b,b
现代数学中又用符号“≮”表示“不小于”,用“≯”表示“不大于”.有了这些符号,在表示不等关系时,就非常得心应手了.
二、师生互动
和学生一起进行知识梳理
(一)由师生一起交流“不等号的由来”①,引出学习目标——认识不等式
1.引起动机:
教师配合课本“观察与思考”“一起探究”等内容提问:用数学式子要如何表示小卡车赶超大卡车?
2.学生进行讨论并回答。
3.教师举例说明:
数学符号“>、<、≥、≤、≠”称为不等号,而含有这些符号的式子就称为不等式。
4.结合自己的旧经验,让学生认识“≤”所代表的意思。
教师说明:
在小学时我们学过“小于”的符号,也就是说如果“a小于b”,我们可以记为“a<b”。而a≤b”则读做“a小于或等于b”,也就表示“a比b小,而且a有可能等于b”.
5.仿照上面说明由学生进行“≥”的介绍.
6.教师举例提问:
如果我们要比较两数的大小关系时,可能会有几种情形?
(当我们比较两数的大小关系时,下面三种情形只有一种会成立,即a<b,a=b或a>b)
7.老师提问:如果我们只知道“a不大于b”,那该如何用不等号来表示呢?
(「a不大于b」表示「a小于b」且「a有可能等于b」,所以我们可以记录成「a≤b」 )
8.仿照此题,引导学生了解“a不小于b”及“a不等于b”所代表的意义.
教师归纳说明:不等式的意义
不等式表示现实世界中同类量的不等关系.在有理数大小的比较中,我们常用不等号连接两个或两个以上的有理数,如-3>-5.不等式含有不等号,常见的不等号有五种,其读法及意义如下:
(1)“>”读作“大于”,表示其左边的量比右边的量大.
(2)“<”读作“小于”,表示其左边的量比右边的量小.
(3)“≥”读作“大于等于”,即“不小于”,表示其左边的量大于或等于右边.
(4)“≤”读作“小于等于”,即“不大于”,表示其左边的量小于或等于右边.
(5)“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确哪个大,哪个小
(二)用不等式表示数量关系
关键是明确问题中常用的表示不等关系词语的意义,并注意隐含在具体的情境中的不等关系.
补充例1. 下面列出的不等式中,正确的是 ( )
(A)a不是负数,可表示成a>0
(B)x不大于3,可表示成x<3
(C)m与4的差是负数,可表示成m-4<0
(D)x与2的和是非负数,可表示成x+2>0
解析:用不等式表示下列数量关系,关键是能用代数式准确地表示出有关的数量,并掌握"不大于"、“不超过”、“是非负数”等词语的正确含义及表示符号.
因为 a不是负数,可表示成a≥0;
x不大于3,应表示成x≤3;
x与2的和是非负数应表示成x+2≥0,
所以 只有(C)正确. 故本题应选(C).
(三)不等式成立的意义
对于含有未知数的不等式来说,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立;当未知数取某些值时,不等式的左、右两边不符合不等号所表示的大小关系,我们说不等式不成立.强调用“≥”表示“>”或“=”,即两者必居其一,不要求同时满足.例如≥0,其中只有“>”成立,“=”就不成立.
三、补充练习
作业:课本P4习题
5分钟练习
1.“x的2倍与3的和是非负数”列成不等式为( )
A.2x+3≥0 B.2x+3>0 C.2x+3≤0 D.2x+3<0
2.几个人分若干个苹果,若每人3个还余5个,若去掉1人,则每人4个还有剩余.设有x个人,可列不等式为_____________________.
〖分层作业〗
基础知识
1.判断下列各式哪些是等式、哪些是不等式、哪些既不是等式也不是不等式.
①x+y ②3x>7 ③5=2x+3 ④x2≥0 ⑤2x-3y=1 ⑥52
2.用适当符号表示下列关系.
(1)a的7倍与15的和比b的3倍大;
(2)a是非正数;
3.在-1,-,-,0,,1,3,7,100中哪些能使不等式x+1<2成立?
综合运用
4.通过测量一棵树的树围,(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5 m的地方作为测量部位,某树栽种时的树围为5 cm,以后树围每年增加约3 cm.这棵树至少生长多少年其树围才能超过2.4 m?请你列出关系式.
5.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为0.02 m/s,人离开的速度为4 m/s,导火线的长x(m)应满足怎样的关系式?请你列出.
〖答案提示〗
〖5分钟练习〗1.A 2. 4( x-1)<3x+5
〖分层作业〗
1.解:等式有③⑤,不等式有②④,既不是等式也不是不等式的有①⑥.
2.解:
(1)7a+15>3b;(2)a≤0;
(3)提示:篮、排球体积没有告知多大,可设篮球体积为x,排球体积为y.则有x>y.
3.解:使不等式x+1<2成立的数字有-1,-,-,0,.
4.提示:要用未知数确定此树的年龄,通过大小比较,将文字语言转换成符号语言,列出关系式.
解:设这棵树至少要生长x年其树围才能超过2.4 m.
3x+5>2.4.
5.提示:导火线燃烧的时间要大于人走10 m所用时间.
解:.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网
点击下载
同课章节目录
第六章 二元一次方程组
6.1 二元一次方程组
6.2 二元一次方程组的解法
6.3 二元一次方程组的应用
6.4 简单的三元一次方程组
第七章 相交线与平行线
7.1 命题
7.2 相交线
7.3 平行线
7.4 平行线的判定
7.5 平行线的性质
7.6 图形的平移
第八章 整式乘法
8.1 同底数幂的乘法
8.2 幂的乘方与积的乘方
8.3 同底数幂的除法
8.4 整式的乘法
8.5 乘法公式
第九章 三角形
9.1 三角形的边
9.2 三角形的内角
9.3 三角形的角平分线、中线和高
第十章 一元一次不等式和一元一次不等式组
10.1 不等式
10.2 不等式的基本性质
10.3 解一元一次不等式
10.4 一元一次不等式的应用
10.5 一元一次不等式组
第十一章 因式分解
11.1 因式分解
11.2 提公因式法
11.3 公式法
点击下载
VIP下载