配方法

文档属性

名称 配方法
格式 rar
文件大小 24.2KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2009-08-04 22:09:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.2.2 配方法
第1课时
一、复习引入
(学生活动)请同学们解下列方程
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9
二、探索新知
1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”. 大意是说:一群猴子分成两队,一队猴子数是猴子总数的的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?
2:如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?
学生活动:
3 .解下列关于x的方程
(1)x2+2x-35=0 (2)2x2-4x-1=0
三、巩固练习
教材P38 讨论改为课堂练习,并说明理由.
教材P39 练习1 2.(1)、(2).
四、应用拓展
4.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半.
五、归纳小结
本节课应掌握:
左边不含有x的完全平方形式,左边是非负数的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
六、布置作业
1.教材P45 复习巩固2.
2.选用作业设计.
一、选择题
1.将二次三项式x2-4x+1配方后得( ).
A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3
2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ).
A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1
C.x2+8x+42=1 D.x2-4x+4=-11
3.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于( ).
A.1 B.-1 C.1或9 D.-1或9
二、填空题
1.方程x2+4x-5=0的解是________.
2.代数式的值为0,则x的值为________.
3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______, 所以求出z的值即为x+y的值,所以x+y的值为______.
三、综合提高题
1.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.
2.如果x2-4x+y2+6y++13=0,求(xy)z的值.
3.新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?
22.2.2 配方法
第2课时
一、复习引入
(学生活动)解下列方程:
(1)x2-8x+7=0 (2)x2+4x+1=0
二、探索新知
解下列方程
(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2 +2(1+x)—4=0
三、巩固练习
教材P39 练习 2.(3)、(4)、(5)、(6).
教材P45 复习巩固3.
作业设计
一、选择题
1.配方法解方程2x2-x-2=0应把它先变形为( ).
A.(x-)2= B.(x-)2=0
C.(x-)2= D.(x-HYPERLINK "http://www.21cnjy.com/")2=HYPERLINK "http://www.21cnjy.com/"
2.下列方程中,一定有实数解的是( ).
A.x2+1=0 B.(2x+1)2=0
C.(2x+1)2+3=0 D.(x-a)2=a
3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是( ).
A.1 B.2 C.-1 D.-2
二、填空题
1.如果x2+4x-5=0,则x=_______.
2.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.
3.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.
三、综合提高题
1.用配方法解方程.
(1)9y2-18y-4=0 (2)x2+3=2x
2.已知:x2+4x+y2-6y+13=0,求的值.
3.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调 查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件.
①若商场平均每天赢利1200元,每件衬衫应降价多少元?
②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.
4.解方程 ax2+bx+c=0 (a≠0)
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网